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Overview



• Why do we need parallelism at all?
• Parallel programming is (even) harder 

than sequential programming

• Single processors are reaching 
limitations
• Clock rate stalled at ~2.5 GHz (due to 

heat)
• Full benefits of vectorisation (SIMD) 

can be hard to realise
• Chip vendors focused on low-power 

(for mobile devices)

Parallel Programming Models



• But we need more speed!
• Solve problems faster (strong scaling)
• Solve bigger problems in same time (weak scaling)
• Tackle new science that emerges at long runtimes / large system size
• Enables more accurate force models (HFX, MP2, RPA …)

• Need strategies to split up our computation between different 
processors

• Ideally our program should run P times faster on P processors - but 
not in practice!
• Some parts may be inherently serial (Amdahl’s Law)
• Parallelisationwill introduce overheads e.g. communication, load 

imbalance, synchronisation…

Parallel Programming Models



“The performance improvement to be gained by parallelisation is limited 
by the proportion of the code which is serial”

Gene Amdahl, 1967

Parallel Programming Models



• Almost all modern CPUs are multi-core
• 2,4,6… CPU cores, sharing access to a common memory

• This is Shared Memory Parallelism
• Several processors executing the same program

• Sharing the same address space i.e. the same variables
• Each processor runs a single ‘thread’

• Threads communicate by reading/writing to shared data

• Example programming models include:
• OpenMP, POSIX threads (pthreads)

Parallel Programming Models



• One very large whiteboard in a two-person office
• the shared memory

• Two people working on the same problem
• the threads running on different cores attached to the memory

• How do they collaborate?
• working together
• but not interfering

• Also need private data

Analogy

my 
data

shared 
data

my 
data



Memory

Needs support from a shared-memory architecture
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• Most supercomputers are built from 1000s of nodes
• Each node consists of some CPUs and memory
• Connected together via a network

• This is Distributed Memory Parallelism
• Several processors executing (usually) the same program
• Each processor has it’s own address space
• Each processor runs a single ‘process’
• Threads communicate by passing messages

• Example programming models include:
• MPI, SHMEM

Parallel Programming Models



• Two whiteboards in different single-person offices
• the distributed memory

• Two people working on the same problem
• the processes on different nodes attached to the interconnect

• How do they collaborate?
• to work on single problem

• Explicit communication
• e.g. by telephone
• no shared data

Analogy

my 
data

my 
data



• Natural map to distributed-memory
• one process per processor-core
• messages go over the interconnect, 

between nodes/OS’s 

Hardware
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Processor

Processor

Processor

Processor
Processor
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• CP2K can use OpenMP or MPI (ssmp or popt)

• Use OpenMP for desktop PCs with multi-cores or
• MPI for clusters and supercomputers

• Maybe also support for Accelerators (GPUs)

• May also combine MPI and OpenMP (psmp)

• Called hybrid or mixed-mode parallelism

• Use shared memory within a node (with several processors)

• Use message passing between nodes

• Usually only useful for scaling to 10,000s of cores!

Parallel Programming Models



CP2K Algorithms and Data Structures
• (A,G) – distributed 

matrices
• (B,F) – realspace

multigrids
• (C,E) – realspace data on 

planewave multigrids
• (D) – planewave grids

• (I,VI) – integration/ 
collocation of gaussian
products

• (II,V) – realspace-to-
planewave transfer

• (III,IV) – FFTs (planewave
transfer)



• Distributed realspace grids
• Overcome memory bottleneck
• Reduce communication costs
• Parallel load balancing

• On a single grid level
• Re-ordering multiple grid levels
• Finely balance with replicated tasks

CP2K Algorithms and Data Structures

  

Data layout in CP2K:
realspace grids (III)

Load balance work done on these grids!
Assign different regions of space at each level to the same MPI rank,
further balance on replicated grids 

1 2 3

654

7 8 9

Level 1, fine grid, distributed Level 2, medium grid, dist Level 3, coarse grid, replicated

5 6 8
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9 4 2

grids are allocated on each process corresponding to their virtual ranks. There are a
number of changes required in the realspace to planewave transfer routines to ensure
that the reordered grid data is sent to the correct process for transferring to the plane
wave grid, but this is facilitated by the use of a pair of mapping arrays real2virtual

and virtual2real which are members of the real space grid data structure and are used
to convert between the two orderings as needed.

For the same problem as above, using the new load balancing scheme, the load on
the most overloaded process is reduced by 30%, and this is now only 3.5 times the load
of the least loaded process. For this particular problem it is not possible to find a perfect
load balance, as there is a single grid level block which has more load associated with
it than then total average load. It is possible to overcome this by setting up the grid
levels so that they are more closely spaced, and thus there is less load on each grid level.
However, this comes at an increased memory cost for the extra grid levels and also affects
the numerics of the calculation slightly (1 in 106). As shown in figures 5 and 6 if it is
possible to balance the load perfectly, then this algorithm will succeed.

After load_balance_distributed

Maximum load: 1165637

Average load: 176232

Minimum load: 0

After load_balance_replicated

Maximum load: 1165637

Average load: 475032

Minimum load: 317590

Figure 5: W216 load balance on 16 cores - perfect load balance achieved
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• libgrid for 
optimised
collocate/integrate 
routines

• ~5-10% speedup 
typical 



• Fast Fourier Transforms
• 1D or 2D decomposition
• FFTW3 and CuFFT library interface
• Cache and re-use data

• FFTW plans, cartesian communicators

• DBCSR
• Distributed MM based on Cannon’s Algorithm
• Local multiplication recursive, cache oblivious

CP2K Algorithms and Data Structures
from a compilation on the XE6 TDS system. Especially for small block sizes (or blocks
where one or more dimensions is small) we find that libsmm outperforms the BLAS in
Cray’s libsci by up to 10 times. Similar results have been found comparing with e.g.
MKL on an Intel platform. For larger block sizes, the performance tends towards Libsci
BLAS indicating that a faster method could not be found. It should be noted that in the
limit of very large blocks (1000x1000), DGEMM achieves around 12.8 GLOP/s, which is
around 5.5 FLOPs/cycle, indicating that the library is making use of the AMD Bulldozer
architecture’s FMA4 instructions since for these tests only a single thread is running.
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Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

Libsmm is distributed with the CP2K source package, and a version of the library
optimised for the current HECToR Phase 3 ‘Interlagos’ processors can be found in
/usr/local/packages/cp2k/2.3.15/libs/libsmm/.

3.1.3 Threading

Recall that DBCSR matrices are decomposed by rows, which each row being ‘owned’
by a specific OpenMP thread. The current load balancing strategy (rows are assigned
weighted by the block size of each row) results in some load imbalance since it does not
take account of the sparsity of each row.

When investigating how to improve the load balance it was discovered that thread 0
was consistently taking longer than the other threads by up to 20% (even for artificial in-
puts which are perfectly load balanced). Careful inspection of the code revelead this was
due to timing routines called by every thread which contained !$omp master directives.
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• GLOBAL%FFTW_PLAN_TYPE 
MEASURE | PATIENT

• Up to 5% Speedup possible

• lib[x]smm for 
small block 
multiplications

• Run on a square
number of processes



• OpenMP
• Now in all key areas of CP2K

• FFT, DBCSR, Collocate/Integrate, Buffer Packing
• Incremental addition over time

• Dense Linear Algebra
• Matrix operations during SCF

• GEMM - ScaLAPACK
• SYEVD – ScaLAPACK / ELPA

CP2K Algorithms and Data Structures

2!

20!

10! 100! 1000! 10000! 100000!

Ti
m

e 
pe

r M
D 

st
ep

 (s
ec

on
ds

)!

Number of cores!

XT4 (MPI Only)!
XT4 (MPI/OpenMP)!
XT6 (MPI Only)!
XT6 (MPI/OpenMP)!

• -D__ELPA=YYYYMM and link library

• To enable:
GLOBAL%PREFERRED_DIAG_LIBRARY 
ELPA

• Up to ~5x Speedup for large, metallic systems

• 1,2 or 4 threads per process



• Different ways of comparing time-to-solution and compute resource…

• Speedup: S = Tref / Tpar

• Efficiency: Ep = Sp / p ,   ‘good’ scaling is E > 0.7

• If E < 1, then using more processors uses more compute time (AUs)

• Compromise between overall speed of calculation and efficient use of 
budget
• Depends if you have one large or many smaller calculations

Parallel Performance



Parallel Performance : H2O-xx
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Parallel Performance: LiH-HFX
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Parallel Performance: H2O-LS-DFT
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Parallel Performance: H2O-64-RI-MP2
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Parallel Performance: GPUs

• ~25% speedup
• Only for DBCSR



• CP2K measures are reports time spent in routines and communication
• Timing reports are printed at the end of the run

-------------------------------------------------------------------------------
- -

- MESSAGE PASSING PERFORMANCE                         -
- -

-------------------------------------------------------------------------------

ROUTINE             CALLS  TOT TIME [s]  AVE VOLUME [Bytes]  PERFORMANCE [MB/s]

MP_Group 4         0.000
MP_Bcast 186         0.018             958318.             9942.82

MP_Allreduce 1418         0.619               2239.                5.13
MP_Gather 44         0.321              21504.                2.95
MP_Sync 1372         0.472

MP_Alltoall          1961         5.334          323681322.           119008.54
MP_ISendRecv       337480         0.177               1552.             2953.86

MP_Wait 352330         5.593
MP_comm_split 48         0.054
MP_ISend 39600         0.179              14199.             3147.38

MP_IRecv 39600         0.100              14199.             5638.21
-------------------------------------------------------------------------------

CP2K Timing Report



-------------------------------------------------------------------------------
- -
- T I M I N G                                  -
- -
-------------------------------------------------------------------------------
SUBROUTINE                       CALLS  ASD         SELF TIME        TOTAL TIME

MAXIMUM       AVERAGE  MAXIMUM  AVERAGE  MAXIMUM
CP2K                                 1  1.0    0.018    0.018   57.900   57.900
qs_mol_dyn_low 1  2.0    0.007    0.008   57.725   57.737
qs_forces 11  3.9    0.262    0.278   57.492   57.493
qs_energies_scf 11  4.9    0.005    0.006   55.828   55.836
scf_env_do_scf 11  5.9    0.000    0.001   51.007   51.019
scf_env_do_scf_inner_loop 99  6.5    0.003    0.007   43.388   43.389
velocity_verlet 10  3.0    0.001    0.001   32.954   32.955
qs_scf_loop_do_ot 99  7.5    0.000    0.000   29.807   29.918
ot_scf_mini 99  8.5    0.003    0.004   28.538   28.627
cp_dbcsr_multiply_d 2338 11.6    0.005    0.006   25.588   25.936
dbcsr_mm_cannon_multiply 2338 13.6    2.794    3.975   25.458   25.809
cannon_multiply_low 2338 14.6    3.845    4.349   14.697   15.980
ot_mini 99  9.5    0.003    0.004   15.701   15.942

---------------------------------------------------------------------

CP2K Timing Report



• Not just for developers!
• Check that communication is < 50% of total runtime
• Check where most time is being spent:

• Sparse matrix multiplication - cp_dbcsr_multiply_d
• Dense matrix algebra – cp_fm_syevd (&DIAGONALISATION), 

cp_fm_cholesky_* (&OT), cp_fm_gemm
• FFT – fft3d_*

• Collocate / integrate – calculate_rho_elec, 
integrate_v_rspace

• Control level of granularity
&GLOBAL
&TIMINGS
THRESHOLD 0.00001  Default is 0.02 (2%)

&END TIMINGS
&END GLOBAL

CP2K Timing Report



• First look for algorithmic gains
• Cell size, SCF settings, preconditioner, choice of basis set, QM/MM, 

ADMM…
• Check scaling of your system

• Run a few MD / GEO_OPT steps
• Turn off outer SCF, keep inner SCF fixed

• Almost all performance-critical code is in libraries
• Compiler optimisation –O3 is good enough
• Intel vs gfortran vs Cray – difference is close to zero

• Before spending 1,000s of CPU hours, build lib[x]smm, libgrid, ELPA, 
FFTW3…
• Or ask your local HPC support team J

Summary



Questions?


