CP2K: MOVING ATOMS

CP2K Summer School, 23-26 Aug 2016

Iain Bethune (material from Jürg Hutter, Matt Watkins, Konstanze Hahn)

http://tinyurl.com/CP2K2016 #CP2KSummerSchool

Outline

- Geometry & cell optimisation
 - Local Minimisation
- Molecular Dynamics
 - Born-Oppenheimer MD
 - Accuracy and stability
- Ensembles
 - Thermostats

Geometry & Cell optimisation

- What do we mean by optimisation?
 - Minimising the total energy
 - aka. relaxation
- In atomistic simulations, the total energy is a function of atomic positions:
 - In DFT: $E_{tot}[n(r)]$ and $n(r) \Leftrightarrow V(\mathbf{R})$ (Hohenberg-Kohn)
 - In molecular mechanics there is a forcefield:

$$U(\mathbf{R}) = \sum_{bonds:i,j} V_{bond}(R_i, R_j) + \sum_{angles:i,j,k} V_{angle}(R_i, R_j, R_k) + \dots$$

Geometry & Cell Optimisation

- We can think of the potential energy as a surface in a 3Ndimensional space (N = number of atoms)
 - + 9 more if we include lattice vectors for a periodic system!
- Minimas may be local or global!

Fig. 12. Different folding scenarios. The vertical axis is internal free energy. Each conformation is represented as a point on the landscape. The two horizontal axes represent the many chain degrees of freedom. a: A rugged landscape with hills and traps, folding kinetics is likely multiple-exponential (from Ref. 8). b: A landscape in which folding is faster than unfolding. A is a through-

way folding path, whereas unfolding chains (path B) must surmount a barrier to reach the most stable denatured conformations. c: A landscape in which folding is slower than unfolding. Most folding paths (path A) pass through a kinetic trap, whereas some low-lying denatured conformations are readily accessible from the native state during unfolding (path B).

Pic: Chan & Dill, Proteins (1998)

Local minimisation

- BFGS (Broyden-Fletcher-Goldfarb-Shanno)
 - most efficient for small—medium size systems with a reasonable guess at the geometry
 - requires inversion/diagonalization of approximate Hessian matrix – Hessian matrix has dimension 3N where N is number of atoms being optimized
- L-BFGS
 - A linear-scaling version of BFGS (Byrd, et al SIAM Journal on Scientific Computing (1995)")
- Conjugate gradients
 - Only uses gradients rather than approximation to curvature, should be more robust when far from minima

Local minimisation

- What can CP2K minimise with respect to?
 - MOTION%GEO OPT vary atomic coordinates only
 - MOTION%CELL OPT both atomic coordinates and lattice vectors
 - Some values may be constrained e.g. cell angles, certain atomic positions
 - Collective variables (distances, angles) can be constrained

Geometry optimisation

- RUN TYPE GEO OPT in GLOBAL section
- GEO OPT%OPTIMIZER in MOTION section
 - CG, use with poor intial guesses, noisy forces, rough optmization
 - (L)BFGS, for most QS calculations consider switching to LBFGS above ~1000 atoms. Look for diagonalization routine timings at end of run to see relative cost
- MAX ITER number of optimization steps
- Constraints may be defined in MOTION% CONSTRAINT section:

```
&FIXED_ATOMS

COMPONENTS_TO_FIX X

LIST 1

&END

&FIXED_ATOMS

COMPONENTS_TO_FIX Y

LIST 2
```


Cell optimisation

CP2K can respect cell symmetry (only for CELL OPT)

```
&CELL

ABC 9.167 9.167 11.808

SYMMETRY ORTHORHOMBIC

MULTIPLE_UNIT_CELL 2 2 2

&END CELL

...

&CELL_OPT

KEEP_SYMMETRY TRUE

&END CELL_OPT
```

Also KEEP_ANGLES (e.g. allows cubic symmetry to

Cell optimisation

- Three algorithms in CP2K controlled by CELL OPT%TYPE
 - GEO OPT: Original implementation.
 - 1. Inner cycle optimize atomic positions
 - 2. Outer cycle optimize cell vectors
 - DIRECT_CELL_OPT (default): New implementation from version 2.4 onwards
 - Cell parameters (stresses) go into the optimizer along with atomic coordinates
 - MD: Optimize at finite temperature.
 - Uses MD, so only of use if you have a cheap Hamiltonian
- DIRECT_CELL_OPT should be much more efficient try for yourself
- Generally best to enforce symmetry / fix angles to start with to
 minimize number of degrees of freedom.

Output

- Grep for "Max. grad" in output file to see the progress of the optimization
 - this gives maximum energy gradient on atoms being optimized
- Below "Convergence check:" there
 is a summary of the progress
 - convergence requires Max and RMS step size and Max and RMS gradients to be converged.
 - Pressure extra criteria for CELL_OPT
- The convergence criteria can be set in the MOTION% [CELL|GEO]_OPT section
- Default Max. grad is equal to 0.025 eV/A
- Good enough for most purposes
 - May need tighter e.g. for subsequent vibrational analysis

```
| Per | Per
```


Global optimisation

- Brute force approach:
 - Generate a grid of points (size m) in each of 3M dimensions
 - m^{3N} energy evaluations exponential in system size X
- Practical methods exploit shape of PES
 - Genetic algorithms
 - Simulated annealing (MOTION%MD%ANNEALING)
 - Monte Carlo
 - Basin Hopping (GLOBAL%SWARM%GLOBAL_OPT%METHOD)
- Details of methods and implementation in Ole Shütt's Masters Thesis
 - Linked from https://www.cp2k.org/docs

Molecular Dynamics

 Classical Molecular Dynamics, particles obey Newton's 2nd Law and move subject to a position-dependent interaction potential:

$$m_i \ddot{r_i} = F_i$$
 $F_i = -\frac{dU(\mathbf{R})}{dr_i}$

- For a fixed number of particles N in a volume V these equations of motion generate the microcanonical (NVE) ensemble.
- The total energy U + the kinetic energy is conserved

Molecular Dynamics

• We solve the equations of motion by discretisation in time, given positions ${\bf R}$ and velocities ${\bf V}$ at time t_0

$$\mathbf{R}(t_0) \rightarrow \mathbf{R}(t_0 + \partial t) \rightarrow \mathbf{R}(t_0 + 2\partial t)...$$

$$\mathbf{V}(t_0) \rightarrow \mathbf{V}(t_0 + \partial t) \rightarrow \mathbf{V}(t_0 + 2\partial t)...$$

- Want a scheme which is:
 - Efficient: minimal number of force evaluations, stored data
 - Stable: minimal drift in conserved quantity
 - Accurate: minimal distance to exact trajectory

Velocity Verlet Integrator
$$r_i(t+\partial t) \rightarrow r_i(t) + \partial t \cdot v_i(t) + \frac{\partial t^2}{2m_i} f_i(t)$$

$$v_i(t+\partial t) \rightarrow v_i(t) + \frac{\partial t}{2m_i} [f_i(t) + f_i(t+\partial t)]$$

- Efficient: 1 force evaluation, 3 stored quantities
- Stable: time reversible
- Accurate: symplectic, integration error $O(\partial t^2)$
- + extensions for constraints (SHAKE, RATTLE, ROLL)
- + multiple timesteps (r-RESPA) and thermostats

Born-Oppenheimer MD

- Born-Oppenheimer Approximation:
 - Ionic mass >> electron mass so equations of motion for (classical) nuclei and (quantum) electrons are separable

$$m_i \ddot{r}_i = F_i$$

$$F_i = -\frac{dU(\mathbf{R})}{dr_i}$$

Kohn-Sham BO potential:

$$U(\mathbf{R}) = \min_{\phi} [E_{KS}(\{\phi(\mathbf{r})\}, \mathbf{R})]$$

$$F_{KS}(\mathbf{R}) = \frac{\partial E_{KS}}{\partial \mathbf{R}} + \sum_{i} \frac{\partial E_{KS}}{\partial \phi_{i}} \frac{\partial \phi_{i}}{\partial \mathbf{R}}$$

- Benchmark system setup:
 - 64 water molecules
 - density 1gcm⁻³
 - Temperature ≈ 330*K*
 - Timestep 0.5fs
- DFT Settings:
- GPW, TZV2P basis (2560 basis functions), PBE functional
- CUTOFF 280 Rydberg, $\varepsilon_{default} = 10^{-12}$
- OT-DIIS, Preconditioner FULL_SINGLE_INVERSE
- Reference trajectory (1ps), $\varepsilon_{SCF} = 10^{-10}$

Unbiased initial guess; $\Phi(t) = \Phi_0(\mathbf{R}(t))$

$\epsilon_{ ext{SCF}}$	MAE <i>E</i> _{KS}	MAE f	Drift
	Hartree	Hartree/Bohr	Kelvin/ns
10^{-08} 10^{-07} 10^{-06} 10^{-05} 10^{-04}	$1.2 \cdot 10^{-11}$ $9.5 \cdot 10^{-10}$ $6.9 \cdot 10^{-08}$ $7.4 \cdot 10^{-06}$ $3.3 \cdot 10^{-04}$	$5.1 \cdot 10^{-09}$ $5.6 \cdot 10^{-08}$ $4.8 \cdot 10^{-07}$ $5.6 \cdot 10^{-06}$ $5.9 \cdot 10^{-05}$	0.0 0.1 0.4 2.3 50

Unbiased initial guess; $\Phi(t) = \Phi_0(\mathbf{R}(t))$

$\epsilon_{ ext{SCF}}$	MAE <i>E</i> _{KS}	MAE f	Drift
	Hartree	Hartree/Bohr	Kelvin/ns
10^{-08} 10^{-07} 10^{-06} 10^{-05} 10^{-04}	$1.2 \cdot 10^{-11}$ $9.5 \cdot 10^{-10}$ $6.9 \cdot 10^{-08}$ $7.4 \cdot 10^{-06}$ $3.3 \cdot 10^{-04}$	$5.1 \cdot 10^{-09}$ $5.6 \cdot 10^{-08}$ $4.8 \cdot 10^{-07}$ $5.6 \cdot 10^{-06}$ $5.9 \cdot 10^{-05}$	0.0 0.1 0.4 2.3 50

DFT%QS%EXTRAPOLATION PS
DFT%QS%EXTRAPOLATION ORDER 4

4th order Gear predictor (PS extrapolation in CP2K)

Method	$\epsilon_{ ext{SCF}}$	Iterations	Drift (Kelvin/ns)
Guess	10^{-06}	14.38	0.4
Gear(4)	10^{-07}	6.47	5.7
Gear(4)	10^{-06}	5.22	11.8
Gear(4)	10^{-05}	4.60	86.8

What is the problem?

Time reversibility has been broken!

DFT%QS%EXTRAPOLATION ASPC
DFT%QS%EXTRAPOLATION ORDER 3

Method	$\epsilon_{ ext{SCF}}$	Iterations	Drift (Kelvin/ns)
	20		
Guess	10^{-06}	14.38	0.4
ASPC(3)	10^{-06}	5.01	0.2
ASPC(3)	10^{-05}	3.02	4.5
Gear(4)	10^{-07}	6.47	5.7
Gear(4)	10^{-06}	5.22	11.8
Gear(4)	10^{-05}	4.60	86.8

Kolafa, JCC (2004) VandeVondele *et al.*, CPC (2205)

DFT%QS%EXTRAPOLATION ASPC DFT%QS%EXTRAPOLATION_ORDER 4...

Method	$\epsilon_{ ext{SCF}}$	Iterations	Drift (Kelvin/ns)
ASPC(4)	10^{-04}	1.62	1742.4
ASPC(5)	10^{-04}	1.63	1094.0
ASPC(6)	10^{-04}	1.79	397.4
ASPC(7)	10^{-04}	1.97	445.8
ASPC(8)	10^{-04}	2.06	24.1

BO-MD in CP2K : Summary

- Defaults settings are ASPC(3)
- SCF tolerance for 'acceptable' drift is system-dependent but EPS SCF 1E-5 or 1E-6 is a good guess
- Use OT and appropriate preconditioner to speed up SCF
- Further reading:
 - "Car-Parrinello molecular dynamics", Jürg Hutter, WIREs Comput Mol Sci, 2: 604-612, 2012
 - Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Dominik Marx & Jürg Hutter

- Ensemble: set of all microstates $\{r_i, \dot{r_i}\}$ accessible to the simulation, each microstate occurring with a particular probability
- Various possibilities for quantities that may be conserved or fixed in the simulations:
 - Number of particles N

Volume V

Energy E

Temperature T

Pressure P

NVE – microcanonical

NVT - canonical

NPT – isotherhmal-isobaric

Chemical Potential μ (not implemented in CP2K)

- Newton's second law applied to a set of N particles in a fixed box of volume V produces the microcanonical (NVE) ensemble
- Total Energy is conserved as the system is isolated

- If the system is in thermal contact with a heat bath at temperature T (canonical / NVT ensemble) the total energy of the system is no longer conserved
 - It may gain or lose energy from/to the heat bath
 - Instead the constant of the motion is the energy of the system + the energy of the bath

 If the box size/shape is allowed to change in response to internal stress and external pressure (isobaric-isothermal / NPT ensemble) then energy is exchanged with the

environment via dW = PdV

- Cons. Quantity =
 - Energy of the system +
 - Energy of the 'thermostat'
 - Energy of the 'barostat'


```
&MOTION

&MD

ENSEMBLE NVE

STEPS 1000

TIMESTEP 0.5

TEMPERATURE 300

&END MD

&END MOTION
```

Possible choices

- microcanonical: NVE
- canonical: NVT
- canonical using Langevin dynamics: LANGEVIN
- isobaric-isothermal: NPT_F / NPT_I
- Constant pressure:NPE_F / NPE_I
- Also: ISOKIN,
 HYDROSTATICSHOCK,
 MSST, MSST_DAMPED,
 NVT_ADIABATIC


```
&MOTION

&MD

ENSEMBLE NVE

STEPS 1000

TIMESTEP 0.5

TEMPERATURE 300

TEMP_TOL 10

&END MD

&END MOTION
```

- Rescales velocities when T < 290K
 or T > 310K
- Does not produce the canonical ensemble
- Use only for equilibriation

Velocity rescaling

 Langevin Dynamics – adds a dissipative (frictional) force and a stochastic force

$$m_i \ddot{r_i} = -\frac{\partial U(r)}{\partial r_i} - m\Gamma \dot{r_i} + W_i(t)$$

- Magnitude of the perturbation depends on the instantaneous temperature
- Surprisingly useful in practice!

- Produces canonical ensemble (NVT)
- Local thermostat
- Ergodic
- Stable at large timesteps

but

- does not conserve momentum (due to drag force)
- only useful for sampling, not dynamical properties (e.g. diffusion)

- Nosé-Hoover (chains)
- Define an extended system with a (set of) thermal reservoirs with effective 'position' and 'momenta'
 - So associated potential and kinetic energies
- Thermostat couples to the particle momenta through modified equations of motion
- Integrate these variables alongside the particle positions, momenta

- Produces canonical ensemble (NVT)
- Local thermostat
- Ergodic (N-H chain only)
- Second order temperature may oscillate towards target


```
&MOTION&
  QM3
    &THERMOSTAT
      TYPE NOSE
      &NOSE
        LENGTH 3
        TIMECON 1000 [fs]
      &END NOSE
    &END THERMOSTAT
  &END MD
&END MOTION
```

- Defaults to 3 (1 recovers original Nosé thermostat
- 1000fs is the target relaxation time

- Use a small TIMECON for rapid equilibriation
- Default is usually OK for production MD
- Check the PROJECT.ener file that the constant of motion is indeed conserved
- Check for large fluctations in the temperature
- Almost all of the same options apply for barostats

