Post Hartree-Fock: MP2 and RPA in CP2K A tutorial

Jan Wilhelm jan.wilhelm@chem.uzh.ch

4 September 2015

Further reading

MP2 and RPA by Mauro Del Ben, Jürg Hutter, Joost VandeVondele

 Del Ben, M; Hutter, J; VandeVondele, J. JOURNAL OF CHEMICAL THEORY AND COMPUTATION 8, 4177-4188 (2012). Second-Order Møller-Plesset Perturbation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane Waves Approach.

```
http://dx.doi.org/10.1021/ct300531w
```

 Del Ben, M; Hutter, J; VandeVondele, J. JOURNAL OF CHEMICAL THEORY AND COMPUTATION 9, 2654-2671 (2013). Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme.

```
http://dx.doi.org/10.1021/ct4002202
```

 Del Ben, M; Schütt, O; Wentz, T; Messmer, P; Hutter, J; VandeVondele, J. COMPUTER PHYSICS COMMUNICATIONS 187, 120-129 (2015). Enabling simulation at the fifth rung of DFT: Large scale RPA calculations with excellent time to solution.

```
http://dx.doi.org/10.1016/j.cpc.2014.10.021
```


Motivation: Jacob's Ladder

Jacob's ladder of density functional approximations

Model of exchange-correlation term improved over time

- · Pure DFT is not enough
- Hybrid schemes improve
- · Chemical accuracy (1 kcal/mol) not reached
- · Go beyond DFT and hybrids (e.g. MP2, RPA)

Accuracy of the density functional approximations

Density functional versus wavefunction methods

Energy of Coulomb repulsion E_{Coul} of electrons:

$$E_{\text{Coul}} = E_{\text{Hartree }(H)} + E_{\text{exchange }(x)} + E_{\text{correlation }(c)}$$

• DFT: exchange and correlation are functionals of the density $n(\vec{r})$:

$$E_{xc}^{\mathsf{DFT}} = E_{xc}^{\mathsf{DFT}}[n]$$

RPA/MP2: exchange and correlation are functional of all electronic wavefunctions:

$$\textit{E}_{\textit{xc}}^{\textit{exact exchange and RPA/MP2}} = \textit{E}_{\textit{x}}^{\textit{HF}}[\{\Psi_j\}] + \textit{E}_{\textit{c}}^{\textit{RPA/MP2}}[\{\Psi_j, \varepsilon_j\}]$$

- RPA and MP2 total energy calculations are postprocessing procedures:
 - converge an SCF with Hartree-Fock (for MP2) and functional of your choice for RPA (e. g. GGA or hybrid functional)
 - 2. take molecular orbitals and their energies $\{\Psi_j, \varepsilon_j\}$ of converged SCF and calculate $E_{xc}^{\text{EXX/MPA}}$ or E_{xc}^{EXX}

MP2 and RPA correlation energies

Second order Møller-Plesset perturbation theory:

$$E_c^{\mathsf{MP2}} = -\sum_{ij,ab}^{\mathit{occ,vir}} \frac{(\mathit{ia}|\mathit{jb})[2(\mathit{ia}|\mathit{jb}) - (\mathit{ib}|\mathit{ja})]}{\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j}$$

Random-phase approximation (RPA)

$$\begin{split} E_c^{\text{RPA}} &= -\frac{1}{2\pi} \iint d\vec{r_1} d\vec{r_2} \int_0^\infty d\omega \ln \left(1 - \frac{\chi^0(\vec{r_1}, \vec{r_2}, i\omega)}{|\vec{r_1} - \vec{r_2}|} \right) - \frac{\chi^0(\vec{r_1}, \vec{r_2}, i\omega)}{|\vec{r_1} - \vec{r_2}|} \\ \chi^0(\vec{r_1}, \vec{r_2}, i\omega) &= 2 \sum_{ia} \frac{\Psi_i(\vec{r_1}) \Psi_a(\vec{r_1}) \Psi_i(\vec{r_2}) \Psi_a(\vec{r_2})}{(\varepsilon_a - \varepsilon_i)^2 + \omega^2} \end{split}$$

• In both cases 4-center 2-electron repulsion integrals (ia|jb) have to be computed

$$(ia|jb) = \int \int \Psi_i(\vec{r}_1) \Psi_a(\vec{r}_1) \frac{1}{|\vec{r}_1 - \vec{r}_2|} \Psi_j(\vec{r}_2) \Psi_b(\vec{r}_2) d\vec{r}_1 d\vec{r}_2$$

Resolution of Identity Approach (RI)

Gaussian Auxiliary Basis {*P*} with Coulomb Metric:

$$\begin{split} (ia|jb) &\approx (ia|jb)_{Rl} = \sum_{PQ} (ia|P)(P|Q)^{-1}(Q|jb) \\ &= \sum_{S} (ia|S)(S|jb) = \sum_{S} B^S_{ia} \ B^S_{jb} \end{split}$$

Instead of computing 4-center 2-electron repulsion integrals (ia|jb) we compute 3-center 2-electron repulsion integrals (ia|S)

$$egin{aligned} B_{ia}^S &= \sum_P (ia|P)(P|S)^{-1/2} \ &= \sum_\mu C_{\mu i} \sum_
u C_{
u a} \underbrace{(\mu
u|S)}_{ ext{GPW integral}} \end{aligned}$$

GPW RI Integrals

$$\mathcal{B}_{\mu
u}^{\mathcal{S}} = (\mu
u | \mathcal{S})$$

Calculate $|S\rangle$ on grid $\rho_S(\mathbf{R})$

Multiply with operator to get potential

$$V_{\mathcal{S}}(\mathbf{G}) = \rho_{\mathcal{S}}(\mathbf{G}) \cdot \mathcal{O}(\mathbf{G})$$

Integrate ($\mu\nu$ | on grid with $V_S(\mathbf{R})$

$$B_{\mu
u}^{\mathcal{S}} = \sum_{\mathbf{R}} \Phi_{\mu
u}(\mathbf{R}) \cdot V_{\mathcal{S}}(\mathbf{R})$$

RI-MP2

$$E_c^{\mathsf{MP2}} = -\sum_{ij}^{o} \sum_{ab}^{v} \frac{(ia|jb) \left[2(ia|jb) - (ib|ja) \right]}{\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j}$$

Calculate Integrals using RI

$$(ia|jb) = \sum_{S} B_{ia}^{S} B_{jb}^{S}$$
 (1)

• Scaling of computational effort is $\mathcal{O}(N^5)$, see Eq. (??):

occ. orbitals
$$(i,j) \sim N$$
 virt. orbitals $(a,b) \sim N$ auxiliary basis $(S) \sim N$

 Reduction of prefactor (typically one order of magnitude) compared to non-RI MP2

RI-SOS-MP2

$$E_c^{\text{MP2,OS}} = -\sum_{\textit{iajb}} \frac{(\textit{ia}|\textit{jb})^2}{\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j} = -\sum_{\textit{iajb}} \frac{(\textit{ia}|\textit{jb})^2}{\Delta_{\textit{ij}}^{\textit{ab}}}$$

• Empirical observation [Y. Jung et al., J. Chem. Phys. 121, 9793 (2004)]:

$$E_c^{\mathsf{MP2}} pprox 1.3 \cdot E_c^{\mathsf{MP2,OS}}$$

• Transform $1/x = \int_0^\infty e^{-xt} dt$ (I) and numerical integration (II)

$$E_c^{\text{MP2,OS}} \stackrel{\text{(I)}}{=} - \int_0^\infty dt \sum_{iajb} (ia|jb)^2 e^{-t\Delta_{ij}^{ab}} \stackrel{\text{(II)}}{\approx} - \sum_q^{N_q} w_q \sum_{iajb} (ia|jb)^2 e^{-t_q\Delta_{ij}^{ab}}$$

• With RI the overall scaling is reduced to $\mathcal{O}(N^4)$

$$\sum_{PQiajb}B_{ia}^{P}B_{jb}^{P}B_{ia}^{Q}B_{jb}^{Q}e^{-t_{q}\Delta_{ij}^{ab}}=\sum_{PQ}\sum_{ia}B_{ia}^{P}B_{ia}^{Q}e^{-t_{q}(\varepsilon_{a}-\varepsilon_{i})}\sum_{jb}B_{jb}^{P}B_{jb}^{Q}e^{-t_{q}(\varepsilon_{b}-\varepsilon_{j})}$$

6-8 quadrature points give µH accuracy

RI-RPA

RPA correlation energy in matrix representation:

$$E_c^{\mathsf{RPA}} = \int_0^\infty \frac{d\omega}{2\pi} \operatorname{Tr}\left(\ln\left(1 + Q(\omega)\right) - Q(\omega)\right)$$
 (2)

where $Q(\omega)$ is a matrix of size $N_{\text{aux. bf.}} \times N_{\text{aux. bf}}$ with entries

$$Q_{PQ}(\omega) = 2\sum_{ia}B_{ia}^{P}G_{ia}(\omega)B_{ia}^{Q}$$

and

$$G_{ia}(\omega) = \frac{\varepsilon_a - \varepsilon_i}{(\varepsilon_a - \varepsilon_i)^2 + \omega^2}$$

- RI-RPA overall scaling $\mathcal{O}(N^4)$
- 10-15 quadrature points (minimax quadrature) give μH accuracy

Scaling

64 water molecules, cc-TZVP Basis; 256 occupied orbitals, 3648 basis function, 8704 RI basis functions

Timings for a single calculation of $E_c^{\rm MP2}, E_c^{\rm SOS\text{-}MP2}$ and $E_c^{\rm RPA}$

On 64 cores CRAY XC30:

System	Atoms	Basis (RI basis)	MP2	SOS-MP2	RPA
64 water molec.	192	3648 (8704)	140 min	64 min	48 min

Timings on 64 cores CRAY CX30 (= 8 nodes on Piz Daint, smallest possible number of nodes due to memory requirements), TZVP basis set, quadrature points: 16 (RPA), 10 (OS-MP2).

On 32768 cores CRAY XC30:

System	Atoms	Basis (RI basis)	RPA
64 water molecules	192	3648 (8704)	22 s
512 water molecules	1536	29184 (69632)	1.7 h

Timings on 32768 cores CRAY CX30 (= 4096 nodes on Piz Daint, 78% of Piz Daint, worldwide 6th largest supercomputer), TZVP basis set, quadrature points: 16.

Input: Basis set and RI basis set for RI-MP2 and RI-RPA

```
&DFT
  BASIS SET FILE NAME ../BASIS RI cc-TZ
                                            ! RI basis sets are available for TZVP basis
  POTENTIAL FILE NAME ../POTENTIAL
&END DFT
&SUBSYS
 &KIND H
   BASIS SET cc-TZ
   RI AUX BASIS SET RI TZ
                              ! For RI calculations, we additionally need RI basis sets.
   POTENTIAL GTH-PBE-q1
 SEND KIND
 &KIND O
   BASIS SET cc-TZ
   RI AUX BASIS SET RI TZ
                              ! For RI calculations, we additionally need RI basis sets.
   POTENTIAL GTH-PBE-q6
 &END KIND
&END SUBSYS
```

Input non-periodic* MP2 on top of Hartree-Fock-SCF

*for periodic calculations, change section PERIODIC NONE and truncate Hartree-Fock

```
&DFT
  BASIS SET FILE NAME ../BASIS RI cc-TZ
  POTENTIAL FILE NAME ../POTENTIAL
  &OS
    METHOD GPW
  &END QS
  &POISSON
    PERIODIC NONE
    PSOLVER MT
  &END POISSON
  &SCF
    SCF GUESS RESTART
  &END SCF
  &XC
    &XC FUNCTIONAL NONE
    &END XC FUNCTIONAL
    &HF
      FRACTION 1.00
      &SCREENING
        EPS SCHWARZ 1.0E-8
      SEND SCREENING
    &END HF
  &END XC
  &WF CORRELATION
    METHOD RI MP2 GPW ! do MP2 calculation
    NUMBER PROC 2
                        ! number of processes for storing grids. In case you run out of memory when
                        ! computing integrals, increase number. Large number slows the calculation down.
    &RI MP2
    &END RI MP2
   &END WF CORRELATION
 EEND DET
```

Input non-periodic SOS-MP2 on top of Hartree-Fock-SCF

```
&DFT
  BASIS SET FILE NAME ../BASIS RI cc-TZ
  POTENTIAL FILE NAME ../POTENTIAL
  &QS
    METHOD GPW
  &END QS
  &POISSON
    PERIODIC NONE
    PSOLVER MT
  &END POISSON
  &SCF
    SCF GUESS RESTART
  SEND SCE
  EXC
    &XC FUNCTIONAL PBE
    &END XC FUNCTIONAL
      FRACTION 1.00
      &SCREENING
        EPS SCHWARZ 1.0E-8
      &END SCREENING
    SEND HE
  EEND XC
  &WF CORRELATION
    METHOD RI SOS LAPLACE ! do SOS-MP2 calculation
    NUMBER PROC 2
    SCALE S 1.3
                   ! scale the OS-MP2 energy by 1.3
    &RI LAPLACE
      OUADRATURE POINTS 10
      SIZE INTEG GROUP 64 ! number of processes dealing with a single frequency grid point. Increase
                           ! this number when running out of memory during the frequency integration.
                           ! A larger number slows the calculation down.
    &END RI LAPLACE
  &END WF CORRELATION
                                                                                                  University of Zurich
```

SEND DET

Input non-periodic RPA on top of PBE-SCF

```
&DFT
 BASIS SET FILE NAME ../BASIS RI cc-TZ
 POTENTIAL FILE NAME ../POTENTIAL
                                                                           ! Hartree-Fock for exchange energy
  &QS
                                                                FRACTION 1.00
                                                                &SCREENING
   METHOD GPW
 &END QS
                                                                  EPS SCHWARZ 1.0E-8
  &POISSON
                                                                &END SCREENING
                                                                EMEMORY
   PERIODIC NONE
   PSOLVER MT
                                                                  MAX MEMORY 0 ! we need not to store
  END POISSON
                                                                        ! any HF integrals because there
                                                                        ! are no subsequent SCF steps
  &SCF
                                                                SEND MEMORY
    SCF GUESS RESTART
                                                               &END HF
  &END SCF
  &XC
                                                              &END RI RPA
                                                            &END WF CORRELATION
    &XC FUNCTIONAL PBE
                                                          SEND DET
    &END XC FUNCTIONAL
  EEND XC
  &WF CORRELATION
   METHOD RI_RPA_GPW ! do an RPA calculation
   NUMBER PROC 2
    &RI RPA
     MINIMAX OUADRATURE TRUE
                                ! choose Minimax quadrature grid points. Then, only few grid points are
                                ! necessary in order to converge the frequency integration in Eq. (2).
     OUADRATURE POINTS 15
                                ! number of grid points for the frequency integration
                                ! number of processes dealing with a single frequency grid point. Increase
      SIZE FREO INTEG GROUP 16
                                ! this number when running out of memory during the frequency integration.
                                ! A larger number slows the calculation down.
```

Optimize RI basis (in case you want other basis than cc-TZVP)

```
&XC
                                                      SEND DET
  &XC FUNCTIONAL
                                                      &SUBSYS
    &PBE
      SCALE X 0.00
      SCALE C 0.00
    &END
  &END XC FUNCTIONAL
                                                       &KIND H
  &HF
                                                         BASIS SET cc-OZVP ! basis set for which
                                                                            ! RI basis is optimized
   FRACTION 1.00
   &SCREENING
                                                         POTENTIAL GTH-PBE-g1
      EPS SCHWARZ 1.0E-8
                                                       SEND KIND
     SCREEN ON INITIAL P FALSE
                                                       &COORD ! optimize RI basis for H2 molecule
                                                               ! and take it for arbitrary environ-
    & END
                                                               ! ment of H
  & END
                                                         н 0.0000 0.0000
                                                                              0 0000
  &WF CORRELATION
   METHOD OPTIMIZE RI BASIS
                                                         H 0 0000
                                                                   0 0000 1 42000
                                                       SEND COORD
    &OPT RI BASIS
                                                      SEND SUBSYS
      DELTA I REL 5.0E-6
                  5.0E-5
     DELTA RI
     EPS DERIV 1.0E-3
     MAX ITER
                  100
      BASIS SIZE MEDIUM ! in case you do not want to specify the number of auxiliary basis functions
     NUM FUNC 4 4 3 2 1 ! specify number of basis functions in RI basis for each shell, e.g.
                         ! there are 3 d-functions and 1 g-function. Rule of thumb: maximum
                         ! 1-quantum number of RI basis exceeds the primary basis by one.
    &END
   NUMBER PROC 1
  END
EEND XC
```

Isobaric-Isothermal Monte Carlo Simulation of Liquid Water

Goal: Determine density of liquid water at ambient conditions.

Method: Isobaric-Isothermal Monte Carlo
 Pre-sampling using fast methods
 (classical force fields, DFT with GGA functionals)

Model

- 64 water molecules, 192 atoms, 256 active electrons
- cc-TZVP Basis, [3s3p2d1f], [3s2p1d], 3648 basis functions, 8704 RI basis functions

RPA density of liquid water

• NpT simulations ($T = 295 \,\mathrm{K}$ and $p = 1 \,\mathrm{bar}$)

[M. Del Ben, J. Hutter, and J. VandeVondele: Probing the structural and dynamical properties of liquid water with models including non-local electron correlation, J. Chem. Phys. 143, 054506 (2015)]

Density of Water

	ho[g/mL]	Error estimate $\Delta_ ho$
BLYP	0.797	0.008
BLYP-D3	1.066	0.007
PBE-D3	1.055	0.006
M062X-D3 (ADMM)	1.004	0.008
MP2	1.020	0.004
RPA	0.994	0.006
Exp.	0.998	

[M. Del Ben, J. Hutter, and J. VandeVondele: Probing the structural and dynamical properties of liquid water with models including non-local electron correlation, J. Chem. Phys. 143, 054506 (2015)]

Very recently: MP2 gradients

 Del Ben, M; Hutter, J; VandeVondele, J. JOURNAL OF CHEMICAL PHYSICS 143, 102803 (2015). Forces and stress in second order Møller-Plesset perturbation theory for condensed phase systems within the resolution-of-identity Gaussian and plane waves approach.

http://dx.doi.org/10.1063/1.4919238

Summary

- MP2 and RPA: two different approximate approaches for the correlation energy
 - post-SCF methods: first, converge SCF with Hartree-Fock (for MP2) or method of your choise (for RPA), then calculate total energy with MP2, RPA
 - · accurate total energies, e.g. for MD to determine density of water
- High computational cost: MP2: $\mathcal{O}(N^5)$, SOS-MP2, RPA: $\mathcal{O}(N^4)$
 - RPA for 64 water molecules on 64 CRAY CX30 cores: 48 min
 - largest RPA calculation so far: 512 water molecules