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CP2K: the swiss army knife of 
atomistic simulation

●A wide variety of models Hamiltonians
● Empirical (classical)
● semi-empirical
● local and non-local DFT
● MP2 & RPA
● Combinations (e.g. QM/MM)

●Various sampling/dynamics algorithms
● Molecular dynamics & Monte Carlo

● NVE, NVT, NPT
● Free energy and PES tools
● Ehrenfest MD

●Properties
● Vibrational
● NMR, EPR, XAS, TDDFT

●Open source & rapid development
● 1.000.000 lines of code

Made available as open source software to the community at www.cp2k.org 



  

CP2K: algorithms & implementation

 for 10'000 – 1'000'000 cores ? for 'emerging' architectures ?

Research & co-design: Hardware vendors & scientists look 
together for the best solution (both soft- and hardware) 

How can we program

M. Del Ben, J. Hutter, J. VandeVondele, J. Chem. Theory Comput 8, 4177-4188 (2012)

GPU

CPU

Could save 300 MWh/yr for our group.



  

Example from ~10 years ago 

● GPW in QS:

● Combine the computational approaches (basis sets) from 
chemistry and physics, gas and condensed phases. 

● OT 

● New approach to robustly and efficiently obtain electronic 
structure

G. Lippert, J. Hutter, M. Parrinello, Theor. Chem. Acc. 103 (2), 124 (1999)
J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm. 167, 103 (2005).
J. VandeVondele, J. Hutter, J. Chem. Phys., 118 (10), 4365-4369 (2003)

The two algorithms that enabled CP2K to do new science



  

http://www.cp2k.org/science/
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Petascale supercomputing

Parallel computers have followed a path of
sustained exponential growth for 20 years

●Serial computers.... do not exist anymore
    Serial programs become irrelevant

●1 month now = 1 day in 5 years

●Few experimental techniques show 
exponential increases in throughput, 
performance, or resolution

The 37 fastest computers in the world have peak petaflop performance

1 petaflops  = solve 100'000 coupled equations for 100'000 unknowns in 1 sec.
     = 1'000'000'000'000'000 multiplications/additions per sec.

#1 = 34 petaflops (June 2014),    Switzerland: 6 petaflops (rank 6, 1st in europe)



  

Improving the predictive nature 
of atomistic simulations
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Time: 
- Longer simulation
- Sampling (Entropy)
- Parameter scans
- Uncertainty quantification

Energy:
- 'eliminate' technicalities (basis)
- beyond GGA

Model:
- reduce size effects (small unit cells?) 
- include explicit solvents
- nanoparticles vs. slabs
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A million atoms and nanometers

Small electronic devices, heterostructures,
interfaces, nano-particles, a small virus.

With Mathieu Luisier

Solvated STMV: 1M

Gate-all-around FET (<22nm)

1.5M atoms
Anatase nanocrystal

Caplovicova et al.
App. Cat. B, 224, 117

20nm



  

Linear Scaling SCF

22nm 22nm

22
nm

4n
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Traditional approaches to solve the self-
consistent field (SCF) equations are O(N3) 
limiting system size significantly.

New algorithms are O(N), allowing for far 
larger systems to be studied.

Largest O(N3) calculation with CP2K 
(~6000 atoms)

Largest O(N) calculation with CP2K
(~1'000'000 atoms)

Avoid finding 20% lowest eigenvectors of a
10'000'000 x 10'000'000 matrix:

Sparse linear algebra needed

Linear scaling techniques do not speedup calculations on small systems. 
They enable calculations on large systems



  

Diagonalization vs. Linear Scaling

Bulk liquid water, traditional diagonalization vs. Linear scaling algorithms, =10-5

Typical crossover point (vs. OT) still a few thousand atoms.



  

DFT: computational aspects

 Compute P from H
KS

  

● Dominant term for large systems (>100s atoms)

● Diagonalization-like procedures standard

● 'Interesting' methods for large systems.

SCF

A two step iterative procedure (simplified) is needed:

 Compute the matrix elements of H
KS

 

● Computational procedure depends on the choice of basis, code, etc.

● Dominant term for small systems (< 100s atoms)

● >10 years of development in the current CP2K code, efficient



  

Some numbers 
for traditional simulations DFT

● Matrix dimension: the number of basis functions

– Typically ~ 10-20 functions per atom (LCAO)

– 2'000 – 40'000
● Rank P: the number of electrons

– Typically ~ 4 per atom

– 200 – 5'000

– 10% - 50% of the eigenvectors of H needed
● # of 'diagonalizations' needed for 'science'

– 100s for static calculations

– 100'000s for dynamic calculations (ab initio MD)



  

Gaussian basis: 
The sparsity of H and S

Sαβ=∫ϕα(r)ϕβ(r )dr

Hαβ=∫ϕα(r )v(r)ϕβ(r)dr

The overlap (integral of the product) rapidly 
decays with the spatial separation of the basis 
functions.

ϕα(r) ϕβ(r)

Sαβ

The sparsity pattern of S and H 
depends on the basis and the 
spatial location of the atoms, but not 
on the chemical properties of the 
system in GGA DFT.



  

Gaussian and plane waves:
GPW in CP2K

•Primary basis: Gaussians
- compact
- sparse Hks (and P)
- Many terms analytic

•Auxiliary basis: Plane waves 
- regular grid for e- density
- FFT for Poisson equation
- No four center integrals needed  (GGA)

J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm. 167, 103 (2005). 
Lippert, G; Hutter, J; Parrinello, M. Mol. Phys., 92 (3), 477-487 (1997).

The GPW algorithm : compute the GGA Kohn-Sham matrix 
                                   in O(N) time, PBC are natural.

Chemistry

Physics



  

GPW: O(N) Coulomb solver

1) Transform the density:  Gaussians → PW 
2) Use (few) FFTs to get the Hartree energy and potential

All steps are O(N) and efficient



  

Some properties of P

C i
T SC j=δij⇔PS PS=PS

Orthonormality of the C's is equivalent to idempotency of P

The sparsity of P depends on the chemistry 
of the system or the spectral properties of (H,S)

Fig. John R. Brews

Included in P Excluded in P

Systems with an energy gap (semiconductors) 
exhibit exponential decay for the density 
matrix.

Systems without an energy gap (metals), at 
zero temperature, show a polynomial decay.

P is a projector on the subspace spanned by the C
i



  

1D example: Hückel Theory

Metal (c=1) Insulator (c=0.5)

Decay as sin(|i-j|)/|i-j| Decay as exp(-a|i-j|)

H=(
0 1 0 0 0 c
1 0 c 0 0 0
0 c 0 1 0 0
0 0 1 0 c 0
0 0 0 c 0 1
c 0 0 0 1 0

)



  

Some numbers for real examples

An amorphous hole conducting material 
used in solar cells

# Atoms: 13'846
# Basis functions: 133'214
Basis quality: DZVP

At a threshold 10-5 

the percentage non-zero elements is:

H, S  :   2%
P      : 15% 
Inv(S) : 20%

Typical: 20'000 non-zeros per row



  

An complementary view on P as f(H)
The density matrix can also be seen as a (matrix) function of H

PS=
1

1+exp(
S−1H−μ I

kT
)

Fermi function

In the limit of small kT a step function is obtained, conveniently written as

PS=
1
2

(1−sign(S−1H−μ I ))

If we can exploit the sparsities of H, S and P computing the matrix 
functions, we can be more efficient than diagonalization based approaches

Almost any way to compute a matrix function can be (has been) tried... 
Chebyshev expansion, contour integrals, recursions, minimizations



  

The matrix sign function

For diagonalizable A, eigenvectors of A are eigenvectors of sign(A), 
with eigenvalues of -1 and 1 respectively

-1

+1

0



  

Sign matrix iterations

Various iterative schemes exist to compute sign(A), the simplest is

Newton Schulz iteration, requires only matrix multiplications

→ 

In exact arithmetic convergence is quadratic:
The number of correct digits of X

n
 is doubled for each iteration



  

Matrix inversion from sign iterations

So, can be used to compute inv(S), sqrt(S), inv(sqrt(S)) ....



  

Millions of atoms 
in the condensed phase

Bulk liquid water.  Dashed lines represent ideal linear scaling. 

Minimal basis sets:
DFT, NDDO, DFTB

Accurate basis sets, DFT
46656 cores

9216 cores

The electronic structure
O(106) atoms in < 2 hours

VandeVondele, Borstnik, Hutter, JCTC, 8, 3565 (2012) 



  

Filtering threshold

Cost per SCF step for a dftb calculation on 6912 water molecules as a function of the filtering threshold for the matrix multiplication. The dashed 
line represent as fit using the functional form aε−1/3 . The error in the trace and the total energy at full SCF convergence is linear in the threshold.

The cost of the calculation depends on the criterion 
(threshold) used to decide if matrix elements are zero. 
Roughly: 10x more accurate means 2x the cost.



  

More advanced SCF methods

Available in CP2K (among others)

- TRS4 : 
trace resetting purification (Niklasson et al. JCP (2003)) 

Automatically determines the chemical potential

- Curvy Steps (Shao et al. JCP (2003)):
Robust minimization approach based on

Further refinements are still possible (we have a backlog of only 10 years)
and are being worked on:
The prefactor is all that remains in O(N) methods.

- PEXSI (Lin, JP Cond. Matter 2013):
      O(N)-O(N**2) depending on dimensionality, suitable for metals



  

Input section

    ! linear scaling SCF
    &LS_SCF
      ! TRS4, does not need an estimate for the chemical potential
      PURIFICATION_METHOD TRS4
      ! threshold used to determine sparsity and thus speed and accuracy
      EPS_FILTER 1E-7
      ! convergence for the SCF
      EPS_SCF    1E-5
      S_PRECONDITIONER ATOMIC
    &END

TRS4

Curvy steps

    ! linear scaling SCF
    &LS_SCF
      ! TRS4, does not need an estimate for the chemical potential
      PURIFICATION_METHOD TRS4
      ! threshold used to determine sparsity and thus speed and accuracy
      EPS_FILTER 1E-7
      ! convergence for the SCF
      EPS_SCF    1E-5
      S_PRECONDITIONER NONE
      &CURVY_STEPS
      &END CURVY_STEPS
    &END

http://www.cp2k.org/exercises:2015_pitt:ls

Full example on the wiki:



  

A sparse matrix matrix multiplication library 
is crucial for linear scaling SCF 

●fully O(N)
●distributed parallel 
●suitable for large number of non-zeros per row (20'000)
●'optimal' for high fill-in (e.g. 10-20%)
●exploiting the natural structure (atomic blocks)
●...



  

DBCSR: a sparse matrix library
Distributed Blocked Compressed Sparse Row
Distributed Blocked Cannon Sparse Recursive

Cannon style communication 
on a homogenized matrix for 
strong scaling

Optimized for the science case: 10000s of non-zeros per row.
The dense limit as important as the sparse limit.

Borstnik et al. : parallel computing (2014)



  

DBCSR software layout



  

Cannon's Algorithm

2-D grid => √P communication steps

●Reduces to the known, efficient, algorithms in the dense case.
●Avoids worst-case all-to-all communication. 
●Communication volume scales as 1/sqrt(P).
●Best performance when the number of ranks is a 'square' number



  

Performance: strong scaling

13846 atoms and 39560 electrons (cell 53.84 A), 133214 basis functions.
  
At full scale-out on the XC30 one multiplication takes less than 0.5s on average, one SCF step 24s.



  

Towards O(1) :
constant walltime with proportional resources

Total time

Local multiplies

Communication

Overhead

Local multiplies constant (OK!).

Overhead & Communication 
         Grows with sqrt(N)
         Needs a replacement for Cannon

Work is underway to replace the Cannon algorithm with something new!
Retain the sqrt(N) max comm, yield constant comm in the limit.

Stringent test:
Small blocks, large overhead
Very sparse matrices
Running with 200 atoms / MPI task



  

Host: LibSMM

Chemical block sizes: 1,4,5,6,13,23,26
Generate autotuned kernels
Similar to ATLAS, FFTW,...
Unrolling, loop ordering, ….
Compiler based (no asm).

Autotuning framework for small matrix matrix multiplications



  

LibCUSMM performance

Measured performance against a roofline model based on memory transfer



  

1st CPU-GPU comparison

Performance comparison of the multi-threaded DBCSR library based on 23x23 matrix
blocks, and was not using the MPI capabilities. The benchmark was run on a dual Sandy Bridge
(E5-2620, 2.0GHz, 6 cores) machine, equipped with one NVIDIA Tesla K20 card.



  

Hybrid Daint vs dual SB Daint

Amorph H2O TiO2

2 SB 372 275 446

1 SB + 1K20X 272 187 263

Canonical benchmarks on 169 nodes
(slightly old code, in particular 2 SB)

Ratio 1.37 1.47 1.70

Three science benchmarks: 
various block sizes, CPU loads, and communication.

GPU flop % 92 99 88

Balanced

Comm. limited

Small blocks

Amorph... a hole conducting 
solar cell material

Daint: XC30, 8 cores + 1 GPU / per node, ~5200 nodes
Fastest computer in Europe.



  

CPU-GPU on hybrid Daint

# nodes 1 CPU-only 1 CPU + 1 GPU CPU+GPU
Blocked

3844 617s 459s 406s

1024 2208s 1351s 1054s

512 4046s 2566s 1341s

256 7124s 4686s OOM-GPU

128 14268s OOM-GPU OOM-GPU

CPU / GPU
ratio

1.5

2.1

3.0

N/A

N/A

As expected, GPU benefit decreases as communication becomes important.

GPU memory limit (~6 Gb) is triggered in these tests, 
no further memory vs. speed trading possible (i.e. 2.5D/3D multiplication)

Blocking groups 'atoms into molecules', improves data-locality but increases
total data and flops: 85 PFLOP vs 132 PFLOP, 256 vs 512 nodes needed

Testcase 'H2O-dft-ls-orig' : 20'000 atoms



  

Historical comparison

Original run published in : VandeVondele, Borstnik, Hutter, JCTC, 2012

1) Run on Jaguarpf (XT5, 2011-01-01), 3888 nodes (12 cores) 
2) Run on Daint (XC30, 2013-11-17), 3844 nodes (8 cores + 1 GPU)

21x 45x

Testcase 'H2O-dft-ls-orig' : 20'000 atoms



  

Bridging from linear scaling SCF 
to materials properties

Payam Payamyar, Khaled Kaja, Carlos Ruiz Vargas, Andreas Stemmer, Daniel J. Murray, Carey Johnson, Benjamin T. King, Florian 
Schiffmann, Joost VandeVondele, Alois Renn, Paola Ceroni, Andri Schütz, Lay-Theng Lee, Zhikun Zheng, Junji Sakamoto, A. Dieter Schlüter, 
Accepted in ADVANCED MATERIALS (2013).

2D polymers: synthetically tailored 2D materials beyond graphene

Based on linear scaling MD simulations for 10'000s of atoms, the morphology  
and properties of the proposed 2D polymer sheets has been investigated



  

MD at scale



  

Electronic properties of 
TiO

2
 nanocrystals

Grätzel, Nature (1991,2001)

TiO2 nanoparticles are a key ingredient in various systems,
including Dye Sensitized Solar Cells.



  

Models in explicit solvent

ACN solvent treated with the Kim-Gordon DFT model: naturally suited for linear scaling

Sizes ranging from 44k to 118k basis functions



  

Full system science case

80'000 atoms DFT, high accuracy settings
Aggregated nanoparticles in explicit solution
Relevant for 3rd generation solar cells

Matrix dims  ~ 772868 x 772868
Threshold ~1E-6 
% non-zero  ~ 4%
SCF steps    ~ 50
# multiplies needed ~ 2000

Dense flops needed =
1846613343679824128000

Actual flops needed =
 849928403736295802

Sparsity boost = 2172x

GPU flop %   = 99.4

Time on 5184 nodes = 6264s

Sustained actual flops = 0.13 PF  

Sustained dense flops = 294.7 PF



  

With explicit MD based equilibration

A crucial aspect for linear scaling calculations... how to get reliable 
structures. Typical empirical models are often not good enough.



  

Yielding detailed 
geometric information

Large fluctuations in smaller crystals, and 
compressed surfaces.



  

Electronic properties



  

Towards ab initio device simulations

10000 atoms NEGF calculations on
Si NWFET, a coupling between 
OMEN and CP2K

Brück S. Calderara M Bani-Hashemanian MH, VandeVondele J, Luisier M Proc. Int. W. Comput. Electronics (IWCE). (2014).



  

Electronic dynamics 

Ehrenfest dynamics:
 - nuclear and electronic motion. 
 - Timescale : 9370as  (1874 steps)
 - 10nm tube (1440 Carbon atoms)
 - Computed in 3 days (144 nodes XC30)

Quantify the electronic spreading by the 
motion of the front.



  

Conclusions

●Full linear scaling is possible, the prefactor is key

●With current parallel computer we can start probing a regime where 
linear scaling is the only option

●A dedicated, specialized matrix multiplication library has been 
developed.

●Nanoparticles of interesting sizes have become within reach
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