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Complex Processes by MD
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1.5  2  2.5  3  3.5  4  4.5  5

RDF O-O 
Cl-H

~ few ns

Predictive power frustrated by sampling fast degrees of freedom 
with time-steps from < 0.1 fs (CPMD) up to 1 fs (MM)

Choose a suitable model of the system  

Determine the thermodynamic conditions ⇒ 
Ensemble averages 

Equilibrium sampling of physical quantities 



Rare Events
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Phase Transitions, Conformational Rearrangements,  
Chemical Reactions, Nucleation, Diffusion, Growth, etc.

Activation Energies Minimum energy pathways

Δ

Complex and high dimensional 
configurational space 

Multitude of unknown 
intermediates and  products 

Unforeseen processes, many 
irrelevant transition states 

Intrinsically multidimensional 
order parameter 

Entropic bottlenecks 

Diffusive trajectories

Exploration of configurational space



Canonical Partition Function
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The Laplace transform of the density of state

Q(N,V, T ) =

Z
exp(��E)⌦(N,V,E)dE

Probability of the macrostate at a given T

Q(N,V, T ) =
1

N !h3N

Z
exp

⇥��H(rN ,pN
)

⇤
drNdpN

=

1

⇤(�)3NN !

Z(N,V, T )

one dimensional integral over E replaced by configurational integral 
analytic kinetic part is integrated out

Z(N, V, T ) =
�

e��U(r)dr configurational partition 
function



Free Energy
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Helmholtz free energy or thermodynamic potential

A = � 1
�

lnQ(N, V, T )

Thermodynamics Statistical Mechanics

�A = � 1
�

ln
�

Z1

Z0

⇥

Q0 �
�

�0

e��H(r,p)drdp Macroscopic state 0 corresponds to a portion of 
the phase space : Γ0

Q0 �
�

�
e��H0(r,p)drdp Macroscopic state 0 corresponds to H0

Q0 �
�

�
e��0H(r,p)drdp Macroscopic state 0 corresponds to a value of a 

macroscopic parameter, e.g T

entropic and enthalpic 
contributions



Perturbation formalism
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Reference (0) and target system (1) H1(r,p) = H0(r,p) + �H(r,p)

Probability of finding (0) in configuration  (r,p) P0(r,p) =
e��H0(r,p)

�
eH(r,p)drdp

�A = � 1

�
ln

R
e��H1drNdpN

R
e��H0drNdpN

= � 1

�
ln

R
e��H0e���HdrNdpN

R
e��H0drNdpN

Free energy difference

�A = � 1

�
ln

⌦
exp

⇥���H(rN ,pN
)

⇤↵
0

Integrating out the analytic kinetic part

⇥F(r,p)⇤1 =
⇥Fe���U ⇤0
⇥e���U ⇤0

�A0,1 = � 1
�

ln⇥e���U ⇤0



Limitations
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Accuracy ⇒ target and reference systems are similar⇒ overlapping regions

insufficient statistics or incomplete overlap ⇒ enhanced sampling

Γ 
0 

1 

0
Γ 

0 

1 

Γ 
0 

1 

0 0

�A = � 1

�
ln

Z
exp [���U ]P0(�U)d�U

Using a similar approach we can derive a formula for the statistical average of any
mechanical property F(rN

) in the target system, in terms of statistical averages over con-
formations representative of the reference ensemble

⌦

F(rN
)

↵

1
=

R

F(rN
)e��U1rN

R

e��U1rN
=

R

F(rN
)e���Ue��U0rN

R

e���Ue��U0rN
(11.22)

After multiplying both the numerator and the denominator by Z0, one obtains

⌦

F(rN
)

↵

1
=

⌦

F(rN
) exp

⇥

���U(rN
)

⇤↵

0

hexp [���U(rN
)]i0

(11.23)

Examples of properties that can be calculated are the average potential energy, forces,
molecular dipole moment or torsional angles in a flexible molecule.

Since �A is calculated as the average over a quantity that depends on �U , as expressed
in Eq. 11.21, then this average can be taken over the probability distribution P0(�U),
instead of P0(r

N
), thus giving a one dimensional integral over the energy difference

�A = � 1

�
ln

Z

exp [���U ] P0(�U)d�U . (11.24)

The integrand is the probability distribution multiplied by the Boltzmann factor, which
gives a shifted function as shown in Fig. 11.1. This indicates that the value of the integral

38 C. Chipot and A. Pohorille

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
DU

0.0

0.4

0.8

1.2

1.6

2.0

2.4

P
(D

U
 )

P0(DU )x

exp(−bDU )

P0(DU )

exp(−bDU ) }

Fig. 2.1. P0(�U), the Boltzmann factor exp (���U) and their product, which is the inte-
grand in (2.12). The low-�U tail of the integrand, marked with stripes is poorly sampled
with P0(�U) and, therefore, is known with low statistical accuracy. However, it provides an
important contribution to the integral

to (2.12), we obtain

exp(���A) =

Cp
2⇡�

Z

exp

h

�
�

�U � h�Ui0 � ��2
�2

/2�2
i

d�U (2.15)

Here, C is independent of �U

C = exp



��

✓

h�Ui0 � 1

2

��2

◆�

(2.16)

Comparing (2.13) and (2.15), we note that exp (���U) P0(�U) is a Gaussian, as
is P0(�U), but is not normalized and shifted toward low �U by ��2. This means
that reasonably accurate evaluation of �A it via direct numerical integration is pos-
sible only if the probability distribution function in the low-�U region is sufficiently
well known up to two standard deviations from the peak of the integrand or ��2

+ 2 standard deviations from the peak of P0(�U), located at h�Ui0. This state-
ment is clearly only qualitative — the reader is referred to Chap. 6 for detailed error
analysis in FEP methods. This simple example, nevertheless, clearly illustrates the
limitations in the direct application of (2.12). If � is small, e.g., equal to kBT , 95%
of the sampled values of �U are within 2� of the peak of exp (���U) P0(�U) at
room temperature. However, if � is large, for example equal to 4kBT , this percent-
age drops to 5%. Moreover, most of these samples correspond to �U larger than
h�Ui0 � ��2 (the peak of the integrand). For this value of �, �U smaller than the
peak of the integrand will be sampled, on average, only 63 out of 10

6 times. Not
surprisingly, estimates of �A will be highly inaccurate in this case, as illustrated in
Fig. 2.1. Several techniques for dealing with this problem will be discussed later in
this chapter and in Chap. 6.

Figure 11.1: P0 the Boltzmann factor, and their product. The low-�U tail of the integrand is poorly
sampled with P0(�U) and therefore is known with low statistical accuracy. However, it provides an
important contribution to the integral.

depends on the low-energy tail of the distribution. If the distribution is Gaussian

P0(�U) =

1p
2⇡�

exp



� (�U � h�Ui0)2
2�2

�

(11.25)
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Shifted function 
Low-!U tail is poorly sampled 

low statistical accuracy 
but important contribution to !A 



Order Parameters
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Variables chosen to describe changes in the system

Reaction coordinate : the order parameter corresponds to the pathway 
along which the transformation occur in nature 

Collective variable : fully represented as function of coordinates 

Indicating intermediate stages of the transformation: mutation point

 Different possible definitions of OP 

Effects on accuracy and efficiency 
of ΔA calculations 

Set up of system with desired 
values of OP 

Smoothness of the simulated path

annihilation non-bondedtorsion angle



Extended Ensemble
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Select parameters, continuous functions of coordinates

⌦⇠(N,V,E, ⇠) =

Z
�[U(rN )� E]

⇣
⇧i�[⇠̂i(r

N )� ⇠i]
⌘
drN

⇠ = {⇠i}

⇠̂i(r
N )

Q⇠(N,V, T, ⇠) =

Z
e��U(rN )

⇣
⇧i�[⇠̂i(r

N )� ⇠i]
⌘
drN

A⇠ = � 1

�
lnQ⇠

Density of States

Canonical Partition Function

Free Energy

must distinguish among metastable states 

select specific configurations in the partition function

⇠̂i(r
N )



Stratification Scheme
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3 Methods Based on Probability Distributions and Histograms 85

Chap. 1 that the free energy difference, �A(⇠), between the states described by ⇠
and ⇠0 is

�A (⇠) = A (⇠) � A (⇠0) = ���1
ln

� (⇠)

� (⇠0)
. (3.13)

In practice, the continuous function �(⇠) is represented as a histogram consisting of
M bins. If all bins have equal size �⇠ = (⇠1 � ⇠0) /M then

� [⇠0 + (i � 0.5) ⇠] =

fi
X

j

fj

(3.14)

where fi is the number of sampled configurations for which the order parameter
takes a value between ⇠0 + (i � 1) ⇠ and ⇠0 + i⇠.

Combining (3.13) and (3.14) leads to a formula for histogram-based estimates
of � (⇠)

�A (⇠0 + (i � 0.5) ⇠) = ���1
ln

fi

f1
. (3.15)

In practice, this simple formula will hardly ever work, especially if the free energy
changes appreciably with ⇠. Consider, for example, two states of the systems, ⇠i

and ⇠j such that �A(⇠i) � �A(⇠j) = 5kBT . Then, on average, the former state
is sampled only seven times for every 1,000 configurations sampled from the latter
state. Such nonuniform sampling is undesirable, as it leads to a considerable loss of
statistical accuracy. For the free energy profile shown in Fig. 3.1, transitions between
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Fig. 3.1. Free energy of isomerization of butane as a function of the C–C–C–C torsional angle,
�. Because of high energy barriers, transitions between stable trans and gauche rotamers are
rare, which makes calculation of the free energy in a single simulation highly inefficient.
Instead, the calculation was performed in four overlapping windows, whose edges are marked
on the x-axis. In each window, the probability density functions and the free energies were
determined as functions of �. They were subsequently shifted so that they matched in the
overlapping regions, yielding the free energy profile in the full range of �

Figure 11.4: Free energy of isomerization of butane as a function of the C-C-C-C torsional angle
⇥. Because of high energy barriers, transitions between stable trans and gauche rotamers are rare,
which makes calculation of the free energy in a single simulation highly inefficient. Instead, the
calculation was performed in four overlapping windows, whose edges are marked on the x-axis. In
each window, the probability density functions and the free energies were determined as functions of
⇥.

consecutive windows overlap one can build the complete probability distribution by match-
ing P(⇠) in the overlapping regions, as illustrated in Fig. 11.4.

Stratification improves efficiency even if the free energy is constant and the motion
along ⇠ is strictly diffusing. In general, by dividing the entire range into L windows of
equal suze, the computer time required to acquire the desired statistics in each window, ⌧w,
is proportional to the characteristic time of diffusion within a window

⌧w / [(⇠1 � ⇠0)/L]

2

D⇠
. (11.57)

The total computer time is approximately

⌧ = L⌧w / (⇠1 � ⇠0)
2

LD⇠
. (11.58)

It decreases linearly with the number of windows, at least for large windows. For small
windows, the statistic accumulated is affected by more correlation. Anyway, ⌧w should
be longer than the time needed to equilibrate the system along the degrees of freedom
orthogonal to ⇠. In particular when the motion along ⇠ is strongly correlated with the
motion along orthogonal DoF, special care is needed. The windows must be large enough,
in order to to hinder the equilibration in the orthogonal DoF. For these reason, at some point
the reduction of the window size is not helping with the computational cost, but might spoil
the good statistical sampling.

11.6.1 Importance Sampling
A powerful strategy to improve the efficiency of free energy calculations is based on mod-
ifying the underlying sampling probability such that important regions in phase space are
visited more frequently.

217

Free energy butane isomerisation

C-C-C-C

Probability distribution of the order parameter

�A(⇠) = A(⇠1)�A(⇠0) = ���1 ln
P(⇠1)

P(⇠0)

Histogram of M bins �⇠ = (⇠1 � ⇠0)/M

P(⇠0 + (i� 0.5)�⇠) =
fiP
j fj

Not uniform sampling

Restrain the system within a window by harmonic potential 

Overlapping windows 

Efficient sampling 

Reconstruct the full probability by matching

⌧ = L⌧w / (⇠1 � ⇠0)2

LD⇠



Good Coordinates for Pathways
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Capture the essential physics include all relevant 
DoF and properly describes the dynamics

q distinguishes between A and B but might fail in 
describing essential aspects of the transition

Discriminate configurations of 
reactants and products and 
intermediates 

Characterisation of the 
mechanisms of transition 

Reversibility 

Fast equilibration of orthogonal 
DoF (no relevant bottlenecks)



Hypothetical 2D Free Energy Landscape
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landscape as a function of two order parameters is displayed. Such a free energy surface
might result, for instance, for a system with a first-order phase transition. The variable ⇠
could then be the size of a cluster of the stable phase forming in the metastable phase and
⇠0 could be some other, important degree of freedom. Due to a rare fluctuation a system
initially in the metastable state A can overcome the nucleation barrier following a pathway
(thick solid line) that crosses the transition state corresponding to the critical nucleus. After
passing the transition state the system then relaxes into B. Although ⇠ can be used to tell
whether the system is in A or in B, it fails to capture all important features of the transition.
Indeed, during the transition a systematic motion along ⇠0 must occur. The failure becomes
apparent by computinf the free energy profile as a function of ⇠ only. This function, shown
in the bottom panel of the figure, displays a barrier with top at ⇠⇤, which des not coincide
with the transition region. Rather, configurations with ⇠ = ⇠⇤ (distributed along the dotted
line) will most likely belong to the basins of attraction of regions A or B.7 Transition Path Sampling and the Calculation of Free Energies 251

(b)

(a)

xx*

x′

x
A(x )

B

A

Fig. 7.1. (a) Hypothetical free energy landscape A(⇠, ⇠�) as a function of two selected degrees
of freedom ⇠ and ⇠�. Such a free energy surface might result, for instance, for a system with a
first-order phase transition. The variable ⇠ could then be the size of a cluster of the stable phase
forming in the metastable phase and ⇠� could be some other, important degree of freedom. Due
to a rare fluctuation a system initially in the metastable state A can overcome the nucleation
barrier following a pathway (thick solid line) that crosses the transition state corresponding
to the critical nucleus. After passing the transition state the system then relaxes in the stable
state B. Although the cluster size ⇠ can be used to tell wether the system is in state A or B
it fails to capture all important features of the transition because during the transition system-
atic motion along ⇠� must occur. (b) The failure of ⇠ to include the essential physics of the
transition becomes apparent when we determine the free energy of the system as a function of
the variable ⇠ only, A(⇠) =

R

d⇠� exp{��A(⇠, ⇠�)}. This function, shown in the lower panel
of the figure, displays a barrier separating the ⇠-values corresponding to the region A from
those from region B. The top of the barrier, located at ⇠⇤, does, however, not coincide with
the transition region. Rather, configurations with ⇠ = ⇠⇤ (distributed along the dotted line in
the upper panel) will most likely belong to the basins of attraction of regions A or B

along a given reaction coordinate [10]. Of course, it is also trivially possible to gen-
erate an equilibrium distribution in configuration space by applying path sampling
techniques to a path probability in which the requirement that paths start and end in
certain regions has been removed. In this case free energies can be simply calculated
from configurations lying on the sampled pathways [11]. For such an unconstrained
ensemble of pathways additional precautions must be taken to guarantee that the rare
event of interest occurs at least on some of the trajectories collected in the simulation.
These issues are discussed in Sect. 7.4.

Transition path sampling can also be helpful in the calculation of free ener-
gies in the context of fast-switching methods described in Chap. 5. As shown by
Jarzynski [12], equilibrium free energies can be computed from the work performed
on a system in repeated transformations carried out arbitrarily far from equilib-
rium. From a computational point of view, this remarkable theorem is attractive
because it promises efficient free energy calculations due to the reduced cost of

Figure 11.17: Hypothetical free energy landscape.

The transition path sampling (TPS) method is a computer simulation technique de-

244

Not including 
important DoF leads 

to wrong 
interpretation 



Some simple collective variables
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Distance 

Angle 

Dihedral 

Difference of distances 

Generalised coordination number 

Generalised displacement

Derivable function of the degrees of freedom to which a given value can be assigned

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Generalized Coordination Number

Select two arbitrary lists of atoms L1 and L2 and a reference distance r0

CL1L2 =
1

NL1

NL1⌦

j=1

⇤
 ⌥

 ⇧

NL2⌦

i=1

1�
�

rij

r0

⇥n

1�
�

rij

r0

⇥m

⌅
 �

 ⌃

Coordination number

D[klm]
L1L2

=
1

NL1

�

i�L1

di · v̂[klm] �
1

NL2

�

j�L2

dj · v̂[klm]

|RI �RJ |

�(RI ,RJ ,Rk)

�(RI ,RJ ,Rk,RL)

|RI �RJ |�| RJ �RK |

CL1L2 =
1

NL1

NL1 

j=1

⇤
⌥

⇧

NL2 

i=1

1�
�

rij

r0

⇥n

1�
�

rij

r0

⇥m

⌅
�

⌃



CP2K input for CV
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In SUBSYS add one section per CV

    &COLVAR
       &COORDINATION
          KINDS_FROM  N
          KINDS_TO   O
          R_0 [angstrom]  1.8
          NN  8
          ND  14
       &END COORDINATION
    &END COLVAR

    &COLVAR
      &DISTANCE_FUNCTION
        ATOMS 4 6 6 1 
        COEFFICIENT -1.00000
        # distance 1 = ( 4 - 6 )
        # distance 2 = ( 6 - 1 )
      &END DISTANCE_FUNCTION
    &END COLVAR

    &COLVAR
      &DISTANCE
        AXIS  X
        ATOMS 1 4
      &END DISTANCE
    &END COLVAR

   &COLVAR
     &RMSD
       &FRAME
         COORD_FILE_NAME planar.xyz
       &END
       &FRAME
         COORD_FILE_NAME  cage.xyz
       &END
       SUBSET_TYPE LIST
       ATOMS 1 3 5 6 8 9
       ALIGN_FRAMES  T
     &END
   &END



Constraints and Restraints
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  &CONSTRAINT
    &COLLECTIVE
      COLVAR 1
      INTERMOLECULAR
      TARGET        5.
      TARGET_GROWTH   1.1
      TARGET_LIMIT     10.
    &END COLLECTIVE
  &END CONSTRAINT

    &COLLECTIVE
      TARGET [deg] 0.0
      MOLECULE 1
      COLVAR 1
      &RESTRAINT
          K   [kcalmol] 4.90
      &END
    &END COLLECTIVE

In MOTION add one section per constraint



Geometrical Constraints
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To freeze fast degrees of freedom and increase the time step: e.g., 
intra-molecular bonds by distance constraints 

To explore only a sub-region of the conformational space 

As reaction coordinates : constrained dynamics and thermodynamic 
integration   

To prevent specific events or reactions

Implicit functions of the degrees of freedom of the system

Lagrange formulation for simple constraints, functions of RI

The Lagrange multipliers ensure that positions 
and velocities satisfy the constraints

�({RI},h,�) = 0 �̇({RI},h,�) = 0

L�({RI}, {PI}) = L({RI}, {PI})�
�

�

��⇥({RI})



Shake-Rattle algorithm
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First update of velocities (first half step) and positions 

Positions’ correction by constraint forces 

Calculation of the new forces FI(t+∂t) 

Update of velocity (second half step)  

Correction by the constraint forces

Modified velocity Verlet scheme by  additional constraint forces

H.C. Andersen, J. Comp. Phys., 52, 24 (1983)

V �
I = VI(t) +

�t

2MI
FI(t) R�

I = RI(t) + �tV �
I

RI(t + �t) = R�
I +

�t2

2MI
g(p)

I (t)

VI(t + �t) = V �
I +

�t

2MI
[FI(t + �t) + g(v)

I (t + �t)]

Constraint Forces

g(v)
I (t) = �

�

�

�(v)
�

⇤⇥�({RI})
⇤RI

g(p)
I (t) = �

�

�

�(p)
�

⇤⇥�({RI})
⇤RI

Set of non-linear equations solved iteratively 

∑

I

∂σα

∂RI
VI =

∑

I

∂σα

∂RI
· V

′

I +
∑

β

(

∑

I

δt2

2MI

∂σα

∂RI

∂σβ

∂RI

)

λ
v
β = 0

e�({�⇤}) = �
�

⇥

J�1
�⇥ ⇥⇥({�⇤}) J�⇥ =

⇤⇥�({�⇤})
⇤�⇥



Thermodynamic Integration
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A(�1)�A(�0) =
� �1

�0

dA

d�
d�

along a one dimensional 
generalized coordinate ξ(x) 

Path-independent

dA

d�
=

�
⇤H
⇤⇥ e��Hdq1..dqN�1dp⇥..dpq

N�1�
e��Hdq1..dqN�1dp⇥..dpq

N�1

(x,p)� (�, q1..qN�1, p
�..pq

N�1) generalized coordinate to simplify derivative

=
�

⇥H
⇥�

⇥

�

force at ξ,  averaged over 
fluctuations of other DoFinstantaneous force on ξ

Potential of Mean Force exerted on ξ

�
⇤H
⇤⇥

⇥

�

=
�

⇤U

⇤⇥
� 1

�

⇤ ln |J|
⇤⇥

⇥
[J]ij =

�xi

�qj

mechanical + entropic



Blue Moon Ensemble
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H� = H+ �(⇥ � ⇥(r))

F(S)

StMD1

tMD2

SMD1 SMD2 SMD3

MD1
MD1

fSMDn
= −

∂F(S)

∂S

∣

∣

∣

∣

MDn

ξ

A(ξ)

ξ1 ξ2 ξ3

��⇥(⇥ � ⇥(r))

Fixman Potential

Series of constrained MD simulations 

�̇ = 0 : p�(q,pq)

un-constrained <..> = constrained corrected <..>F

H�
F = H� +

1
2�

lnZ⇥ Z� =
⇤

i

1
mi

�
⇥�

⇥xi

⇥2

independent 
MD replica 

mean force acting on the 
system to hold ξ constant

dA

d⇥
= ��F ⇥F

��̇

mean force acting on ξ 
related to external force 

to hold ξ constant



...some difficulties
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Many estimates at ξ to reduce statistical errors 

Many windows to get accurate integrals  

May not be easy to prepare by hand  the system at given ξ  

Different possible pathways: the starting configuration 
selects one path, but crossing is rare, ξ(r)=ξ partially sampled 
or rate limiting 

Multidimensionality (more coordinates) too expensive

MD performed at fixed ξ, collecting statistics of the force acting 
on ξ  ⇒ λ∇ξ, constraint force 



Metadynamics
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Canonical equilibrium distribution under potential V(r) 

Choose a set of relevant Collective Variables S(r):{Sα(r)}, such that the 
process is well defined in the reduced space  Σ(S) 

 Perform MD and re-map each micro-state by projecting the trajectory 
into the configuration space  Σ(S):     meta-trajectory     S(r(t)) 

Enhance the exploration by adding a penalty potential that discourages 
the  system to visit already explored macro-states 

New probability distribution generated under the action of V+VMTD

P (S) =
e��A(S)

�
dS e��A(S)

A(S) = � 1
�

ln
�⇤

dr e��V (r)⇥(S� S(r))
⇥

VMTD(S(r), t) =
�

t⇥=�G,2�G,...

Wt⇥e
� [S(r)�S(rG(t⇥))]2

2�S2

 A Laio et al. Proc. Natl. Acad. Sci. U.S.A., 99, 12562 (2002) 
M Iannuzzi et al, PRL, 90, 238302 (2003)



History Dependent Potential
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Non Markovian Coarse-grained MD

Escape

S

F(S)

V(t)

t1

t2

t3

t4 Fill-up by successive contributions 
Keeping track of the explored space 

Direct estimate of FES topology

Eliminate metastability and reconstruct A(S) within Σ(S)

AG(S, t) = �VMTD(S(r), t)

Flattening of free energy surface

W/�G � 0

�A(S) = A(S)�AG(S, t)
P (S) � e��[A(S)�AG(S,t)]

��A(S)⇥

C Micheletti et al, PRL, 92, 170601 (2004)

�tMD � ⇥G � ⇥s
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Histogram of a trajectory generated by V+VMTD 
provides a direct estimate of free energy



Extended Lagrangian MTD
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M Iannuzzi et al, PRL, 90, 238302 (2003)

Introduction of auxiliary variables s : {sα} one for each Sα(r) 
with large enough M

Enforcing adiabatic separation,            other time scales and memory effects

thermalization coupling to system 
DoF

sampling 
enhancement

L = K � V (r) +
�

�

1
2
M�ṡ� �

�

�

1
2
k�(s� � S�(r))2 � VG(s, t)

VG(s, t) =
�

t⇥<t

Wt⇥e
� (s�sG(t⇥))2

2�s2

Ak(s) = � 1
�

ln
�⇤

dr e��[V (r)+ 1
2

P
� k�(s��S�(r))2]

⇥

For large t and slow deposition rate, VG approximates the free 
energy and the meta-trajectory s(t) follows the MEP

lim
k�⇥

Ak(s) = A(s)

�s �
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C Micheletti et al, PRL, 92, 170601 (2004) 
A Laio et al, JPC-B  109, 6714 (2005)

Dynamics generating the equilibrium distribution associated with A(s)-AG(s,t)

�(s, t) =
�
⇥(AG(s, t) � A(s) � ⇥AG(s, t) � A(s)⇤)2⇤

Averaging over many independent trajectories

�̄(t) =
�
� ds �(s, t)�

� ds

100 300 500 700 900

0.2

0.6

1

number of Gaussians

er
ro

r

different 
A(s) 

profiles

⇥̄ = C(d)

�
V���s�W
�D�⇤G�

ttot = ⇥G

⇥
�:A(s)<Amax

ds(Amax �A(s))

(2�)d/2W
�

� �s�

too large ∆s would smear out 
A(s) details : ∆s/L<0.1 

Only relevant time scale is τs 

the error depends on τG/W 
small Gaussians more frequently 

is better 

Empirical error estimate

⇥̄ �

⇥
⇥⇤s⇥Ā
ttot�

V��
� �s�
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The selected CV must discriminate among the relevant states (reactants, 
products, TS)  

The number of hills required to fill the well is proportional to 1/(∆)NCV  

The sampling of large variations of the CV over almost flat energy regions is 
expensive: diffusive behavior 

MTD is not the true dynamics. Reaction rates are derived a posteriori from the 
estimated FES  

The analysis of the trajectory is needed to isolate the TS  

With proper choices of CV and parameters, the MTD trajectory describes the 
most probable pathway  taking into account also possible kinetic effects (lager 
and shallower channels are preferred)  

The accuracy in the evaluation of the FES depends on hills’ shape and size, and on 
the deposition rate. The ideal coverage  VG ({S})= -A({S}) (flat surface)
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&FREE_ENERGY 
  &METADYN 

    DO_HILLS T 

    LAGRANGE 
    NT_HILLS 40 
    SLOW_GROWTH 
    TEMPERATURE  300 
    TEMP_TOL 100 
    WW 0.0001 
    HILL_TAIL_CUTOFF 2 
    P_EXPONENT  8 
    Q_EXPONENT  20 

    &METAVAR 
      COLVAR  1   ! COORDINATION 
      SCALE   0.18 
      LAMBDA  0.8 
      MASS    20 
      &WALL 
          POSITION   2.0 
          TYPE QUADRATIC 
          &QUADRATIC 
             DIRECTION WALL_PLUS 
             K 1.0 
          &END QUADRATIC 
      &END WALL 
    &END METAVAR 

     &METAVAR   
       COLVAR   2  ! TORSION 
       SCALE    0.22 
       LAMBDA   0.8 
       MASS     30 
    &END METAVAR 

     &PRINT 
       &COLVAR 
          COMMON_ITERATION_LEVELS 3 
         &EACH 
           MD 1 
         &END 
       &END 
       &HILLS 
         COMMON_ITERATION_LEVELS 3 
          &EACH 
            MD 1 
          &END 
        &END 
     &END 

   &END METADYN 

&END FREE_ENERGY
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External library with advanced MTD capabilities: 

Many different collective variables 
Well-tempered MTD 
Multiple walkers MTD 
Bias exchange MTD 
Reconaissance MTD 

2 versions work with cp2k: Plumed 1.3, Plumed 2.x



Installation with PLUMED v1.3
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Need to separately compile Plumed with cp2k 
Different procedures for v 1.3 and 2.x

Compiling Plumed 1.3 with a current cp2k version: 
1. Download a modified plumed 1.3 release from http://www.cp2k.org/static/

downloads/plumed/ 
2. Extract the archive, run the provided script plumedpatch_cp2k.sh 
3. Compile the plumed library 
4. Compile cp2k with the flag –D__PLUMED_CP2K 

Detailed instructions provided under: http://www.cp2k.org/
howto:install_with_plumed 

Issues:  
Need to recompile with this complicated 2-step procedure every time you 
want to update the code 
1.3 is an outdated version of plumed

http://www.cp2k.org/static/downloads/plumed/
http://www.cp2k.org/howto:install_with_plumed
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31

Compiling Plumed 2.x with a current cp2k version: 

1. Download plumed from the official website 

3. Modify cp2k ARCH file as specified under  
 http://www.cp2k.org/howto:install_with_plumed 

5. Compile cp2k 

Much more straightforward procedure, giving you the most 
recent version of plumed, which is actively maintained. 

Use CP2K v 2.7

http://www.cp2k.org/howto:install_with_plumed
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In the CP2K input file:
&FREE_ENERGY 
...  

&METADYN 
     USE_PLUMED .TRUE. 
     PLUMED_INPUT_FILE ./filename.inp 
&END METADYN 

&END FREE_ENERGY

Additional plumed input file (v2):
a: DISTANCE ATOMS=5,7 
b: ANGLE ATOMS=7,9,15 

metad: METAD ARG=a,b PACE=500 HEIGHT=1.2 SIGMA=0.35,0.35 
FILE=HILLS  

PRINT STRIDE=10 ARG=phi,psi,metad.bias FILE=COLVAR

Colvar definition
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Building Blocks for Two-Dimensional Metal−Organic Frameworks
Confined at the Air−Water Interface: An Ab Initio Molecular
Dynamics Study
Ralph Koitz, Marcella Iannuzzi,* and Jürg Hutter

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

*S Supporting Information

ABSTRACT: Two-dimensional molecular sheets are of prime interest in nanoscience
and technology. A promising class of such materials is 2D metal−organic frameworks
(MOFs), assembled by cross-linking precursors with metal ions. It was recently
demonstrated that such MOFs can be synthesized from monomers confined at an air−
water interface. In order to elucidate this process at the atomic scale, we study a large flat
tris-terpyridine-derived molecule (TTPB) on a water surface using ab initio molecular
dynamics. We investigate the properties of the molecule and examine its reaction with Zn
ions from the liquid phase. The fluid substrate significantly stabilizes the adsorbate while
maintaining sufficient conformational flexibility to allow dynamic rearrangement and
chemical reactions. The successful uptake and binding of ions is the first step toward
linking TTPB molecules to dimers and large 2D MOFs.

■ INTRODUCTION
Since the advent of graphene and related materials, two-
dimensional sheet-like molecules have become the target of
intense study.1,2 Up to now, the large-scale fabrication of well-
defined nanosheets has remained a challenge. A popular
method to synthesize these materials is through the
decomposition of precursor molecules on suitable surfaces.3,4

However, some aspects of this approach limit its usefulness.
First, substrates are typically only reactive at the surface, leaving
the bulk of the solid unutilized for the reaction. Second, the
solid with its rigidly placed binding sites limits the conforma-
tional flexibility of adsorbed species and thus the range of
accessible reaction products.5,6 Third, removing the final
extended sheet from the support may be challenging.7

Alternative approaches to preparing 2D sheets are thus highly
desirable.
A promising route toward preparing extended 2D coordina-

tion polymers or 2D metal−organic frameworks (MOFs) has
recently been presented.8,9 Suitable monomeric precursors can
be confined on the surface of water, induced to form a dense
layer by increasing lateral pressure, and linked with metal ions
from the liquid phase to form large sheets.8,9 This way, the
liquid−vapor interface of water is used as a “surface” on which
the reaction is performed, while metal ions can be supplied
from the bulk of the solution and used to assemble an extended
sheet. The substrate can provide reactants from the bulk liquid
by diffusion, lightly and dynamically stabilize adsorbates, and
facilitate easy removal by drying. Therefore, all three issues
mentioned above are overcome. By systematically exploiting
the advantages of liquids as a support for chemical reactions, it
may be possible to prepare new materials or develop new
routes toward relevant products such as tailored single-layer

membranes, free-standing functional sheets, and improved
graphene analogues. To this end, we aim to gain insight into
the relevant processes at the atomic scale using advanced
computational methods.
A number of recent simulation studies have explored the

properties of water surfaces,10−12 focusing particularly on
hydrogen bonding at the interface, diffusivity, and ion solvation.
Water slabs with adsorbed molecules are less widely studied,
but some classical simulations of surfactants on water have been
performed.13 Self-assembly and reactions to produce large two-
dimensional layers on solids constitute an important field in
surface science that has been exhaustively studied in recent
years.3,14−17 In contrast, the approach of using fluid surfaces to
carry out reactions and produce extended sheets is currently
largely unexamined, both experimentally and computationally.
An exception to this has been the use of liquid interfaces for the
formation of self-assembled monolayers, as well as the large
field of surfactants and lipid bilayers. In these applications,
however, no new bonds are formed, and products are typically
weakly bound aggregates. Previous investigations have focused
either on photochemical processes involving molecules on
water,18,19 salts and ions at/near the surface,20−22 and substance
uptake across the gas/liquid interface.23 Reactions such as the
enzymatic cleavage of surface-confined esters have also been
studied.24 Large molecules “adsorbed” at the water surface and
their reactions with solutes have not been examined thoroughly
so far, particularly at the atomic scale.
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TTPB is confined on a surface of liquid 
water, metal ion dissolved in the bulk 

coordinates to N-pockets 

Metal ion coordination leads to 
formation of 2D-MOFs 
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mechanism and energetics of Zn binding by MTD

2 CVs 
Coordination number of Zn by TTPB (nZn) 
Distance between Zn and centre of TTPB molecule (dZn) 

Hills spawned every 50 steps after 7.5ps of unbiased MD 

nZn dZn [Å]

time [ps]
3 6 3 60

3

2

1 4

8

12
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approximately 50%. Compared to the bulk-like region, the
fraction of DDAA species decreases from 0.65, and the
occurrence of DA molecules roughly doubles. On the other
hand, the DAA and DDA water molecules are approximately
equally common on the free and covered surface sides,
exhibiting increased probabilities compared to the bulk. In
the TTPBw−Zn3 simulations, the differences in DDAA
frequencies between the covered and free surfaces are less
pronounced. The fraction of DA species is about 40% lower on
the TTPB-covered side, and the occurrence of DAA species is
somewhat higher. Furthermore, we note a small number of
double-acceptor (AA) species on the TTPB-covered side that
are almost completely absent from all other vertical regions.
Generally, the TTPBw and TTPBw−Zn3 systems exhibit quite
similar depth dependencies of their H-bond distributions. It
should be noted that in the TTPBw−Zn3 simulation, a total of
six Cl− ions are present in the bulk liquid, which may account
for some of the differences in H-bonding patterns between the
two simulations.
Our results agree with previous conclusions about the

distributions of H-bonds near the air−water interface.
Furthermore, they suggest that the adsorbate has a subtle
influence on the H-bonding pattern of near-surface water
molecules, reordering them to affect the frequencies of different
D/A combinations.
Ion Uptake from the Solution. Once the TTPB

monomer is confined at the water surface, the next step in
the formation of a MOF is the coordination of metal ions,
which serve as linkers between molecules. This process involves
diffusion of the ions from the liquid phase to the surface and
subsequent formation of three coordinative Nterpy−Zn bonds.
Having established that Zn2+ binds to the terpy moieties of
TTPB in a stable way (vide supra), we now examine the
transition TTPB + Zn2+(aq) ⇌ TTPB−Zn in detail, focusing on
one isolated ion uptake rather than the saturation of all three
ligand sites.
We use MTD to accelerate the simulation of the process. As

CVs, we choose the distance from Zn to the center of TTPB,
dZn,TTPB, and the Zn−N coordination number, nZn,N. Starting
from a configuration with Zn2+ rather far away from the
molecule, along the MTD trajectory, dZn,TTPB slowly decreases,
and eventually nZn,N increases from 0 to 3, that is, full
coordination of Zn by terpyridine. As the simulation goes on,
the bias potential drives Zn2+ out of the complex back into the
solution. We can thus elucidate the molecular details of ion
binding and describe the energy landscape of the process.
Ion Insertion: Free Energy and Mechanism. We plot the

aggregated energy data as a function of the two CVs, as well as
a minimum-energy path for the first Zn2+ uptake event in
Figure 5a. The free-energy profile along this path is shown in
Figure 5b, with minima and barriers labeled for comparison.
Starting from the bulk water (point 1), the ion has to escape a
minimum of 430 kJ·mol−1 due to the solvation free energy,
overcomes a barrier of about 165 kJ·mol−1 (point 2), and settles
into a wider and deeper minimum somewhat closer to TTPB
(−520 kJ·mol−1, point 3). The ion then traverses a second
barrier (point 4) until it is bound by the first pyridyl group
(nZn,N = 1). After a final, smaller barrier (127 kJ·mol−1, point 6),
TTPBw−Zn3 is formed, characterized by a very narrow
minimum with a depth of −388 kJ·mol−1 (point 7).
The FES exihibits a number of minima. Most notable is a

broad and deep “valley” with uncoordinated Zn (nZn,N ≈ 0) at
the center of mass of TTPB up to dZn,TTPB ≈ 8 Å with Zn

solvated by H2O in a bulk-like environment. There is also a
broad minimum for nZn,N between 1 and 2 (point 5), where the
ion is partially coordinated by TTPB and still has substantial
freedom of movement.

Figure 5. (a) Reconstructed FES of Zn2+ uptake from solution as a
function of Zn−N coordination number and distance from Zn to the
center of the TTPB molecule. Minimum-energy path representing the
first Zn2+ uptake event from bulk water. Significant points (minima,
barriers) are numbered 1−7. (b) Free-energy profile along the
minimum-energy path shown in (a). (c) Snapshots from the MTD
trajectory showing the stepwise binding of Zn (orange) by TTPB.
Color codes are as those in Figure 1.
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somewhat higher. Furthermore, we note a small number of
double-acceptor (AA) species on the TTPB-covered side that
are almost completely absent from all other vertical regions.
Generally, the TTPBw and TTPBw−Zn3 systems exhibit quite
similar depth dependencies of their H-bond distributions. It
should be noted that in the TTPBw−Zn3 simulation, a total of
six Cl− ions are present in the bulk liquid, which may account
for some of the differences in H-bonding patterns between the
two simulations.
Our results agree with previous conclusions about the
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Furthermore, they suggest that the adsorbate has a subtle
influence on the H-bonding pattern of near-surface water
molecules, reordering them to affect the frequencies of different
D/A combinations.
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diffusion of the ions from the liquid phase to the surface and
subsequent formation of three coordinative Nterpy−Zn bonds.
Having established that Zn2+ binds to the terpy moieties of
TTPB in a stable way (vide supra), we now examine the
transition TTPB + Zn2+(aq) ⇌ TTPB−Zn in detail, focusing on
one isolated ion uptake rather than the saturation of all three
ligand sites.
We use MTD to accelerate the simulation of the process. As

CVs, we choose the distance from Zn to the center of TTPB,
dZn,TTPB, and the Zn−N coordination number, nZn,N. Starting
from a configuration with Zn2+ rather far away from the
molecule, along the MTD trajectory, dZn,TTPB slowly decreases,
and eventually nZn,N increases from 0 to 3, that is, full
coordination of Zn by terpyridine. As the simulation goes on,
the bias potential drives Zn2+ out of the complex back into the
solution. We can thus elucidate the molecular details of ion
binding and describe the energy landscape of the process.
Ion Insertion: Free Energy and Mechanism. We plot the

aggregated energy data as a function of the two CVs, as well as
a minimum-energy path for the first Zn2+ uptake event in
Figure 5a. The free-energy profile along this path is shown in
Figure 5b, with minima and barriers labeled for comparison.
Starting from the bulk water (point 1), the ion has to escape a
minimum of 430 kJ·mol−1 due to the solvation free energy,
overcomes a barrier of about 165 kJ·mol−1 (point 2), and settles
into a wider and deeper minimum somewhat closer to TTPB
(−520 kJ·mol−1, point 3). The ion then traverses a second
barrier (point 4) until it is bound by the first pyridyl group
(nZn,N = 1). After a final, smaller barrier (127 kJ·mol−1, point 6),
TTPBw−Zn3 is formed, characterized by a very narrow
minimum with a depth of −388 kJ·mol−1 (point 7).
The FES exihibits a number of minima. Most notable is a

broad and deep “valley” with uncoordinated Zn (nZn,N ≈ 0) at
the center of mass of TTPB up to dZn,TTPB ≈ 8 Å with Zn

solvated by H2O in a bulk-like environment. There is also a
broad minimum for nZn,N between 1 and 2 (point 5), where the
ion is partially coordinated by TTPB and still has substantial
freedom of movement.

Figure 5. (a) Reconstructed FES of Zn2+ uptake from solution as a
function of Zn−N coordination number and distance from Zn to the
center of the TTPB molecule. Minimum-energy path representing the
first Zn2+ uptake event from bulk water. Significant points (minima,
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minimum-energy path shown in (a). (c) Snapshots from the MTD
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Zn migrates towards the surface.  
3-step binding process of the Zn ion, assisted by rotation of pyridyl groups. 

Binding energy of Zn competes with the larger number of configurations in 
solution. More microstates for dissolved Zn lower in free energy.


