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Equations of Motion (EOM)

Newton’s EOM for a set of classical point particles in a
potential.

dV(R)

MR, = — T:1

These EOM generate for a given number of particles N in a
volume V the micro canonical ensemble (NVE ensemble).
The total energy E is a constant of motion!
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Total Energy

Total Energy = Kinetic energy + Potential energy

Kinetic energy = T(R) =) _ M g
=1

Potential energy = V(R)

We will use the total energy as an indicator for the numerical
accuracy of simulations.
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Lagrange Equation

doL oc
dtpR  OR
with
L(R,R)=T(R)— V(R)

Equivalent to Newton’s EOM in Cartesian coordinates, but is
more general and flexible.

e Extended systems
e Constraints
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Integration of EOM

Discretization of time

R(t) - R(t+7) — R(t+27) = --- — R(t+ m7)
Vit) - V(it+7)—> V(t+27r)— - = V(t+ mr)

~

e Efficiency: minimal number of force evaluations, minimal
number of stored quantities

o Stability: minimal drift in constant of motion (energy)

e Accuracy: minimal distance to exact trajectory
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Sources of Errors

Type of integrator
predictor-corrector, time-reversible, symplectic

Time step 7
short time accuracy measured as O(7")

Consistency of forces and energy
e.g. cutoffs leading to non-smooth energy surfaces

Accuracy of forces
e.g. convergence of iterative force calculations (SCF,
constraints)
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Velocity Verlet Integrator

2

R(t+7) = R(t)+ V() + ZT—Mf(t)

V(t+7)= V() + ﬁ[f(t) +f(t+7)

Efficiency: 1 force evaluation, 3 storage vectors

Stability: time reversible

Accuracy: O(72)

Simple adaptation for constraints (shake, rattle, roll)
Simple adaptation for multiple time steps and thermostats
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Test on Required Accuracy of Forces

Classical Force Field Calculations, 64 molecules, 330 K
TIP3P (flexible), SPME (« = 0.44, GMAX = 25),
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Stability: Accuracy of Forces

Stdev. Af Stdev. Energy Drift

Hartree/Bohr uHartree  pHartree/ns  Kelvin/ns
- 170.35 35.9 0.06

10-10 179.55 -85.7 -0.14

1008 173.68 6.5 0.01

1097 177.83 -58.2 -0.10

10706 — -385.4 -0.63

1079 — 9255.8 15.21

1004 — 972810.0 1599.31
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Born—Oppenheimer MD: The Easy Way

dV(R)
dR,
V(R) = man [Exs({®(r)}; R) + const.] Kohn—Sham BO potential

MR, = — EOM

Forces

dming Exs({®(r)}; R)

fis(R) = dR
_ OExs  Oconst. 0(Eks + const.) 0®;
=R o T2 9%, oR

i

=0
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Computational Details

e System
e 64 water molecules

e density 1gcm—3
e Temperature ~ 330K
e Timestep 0.5fs

e DFT Calculations
o GPW, TZV2P basis (2560 bsf), PBE functional

 Cutoff 280 Rydberg, egeaut = 10712
e OT-DIIS, Preconditioner FULL_SINGLE_INVERSE

 Reference trajectory (1ps), escr = 1010
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Stability in BOMD

Unbiased initial guess; ®(t) = ®o(R(t))

esce MAE Egs MAE f Drift

Hartree Hartree/Bohr Kelvin/ns
10-% 12.10 51.10799 0.0
10707 95.10°10 56-10708 0.1
10°% 69-107%  48.10°% 0.4
10705 7.4.10706 5610706 2.3
10704 3.3.10°% 59.1079 50

Consistent with results from classical MD

Note accuracy of forces!
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Efficiency: Initial Guess of Wavefunction

4th order Gear predictor (PS extrapolation in CP2K)

Method escr lterations Drift (Kelvin/ns)

Guess 107 14.38 0.4
Gear(4) 1079 6.47 5.7
Gear(4) 10706 5.22 11.8
Gear(4) 1079 4.60 86.8

What is the problem?

Time reversibility has been broken!
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Generalized Lagrangian

1, 1
£(9,9,%,%) = 5MG® + 5x* — E(a,y) + knG(Ix - )

y = F(q,x) wavefunction optimization
G(lIx—vyl) wavefunction retention potential

Equations of motion

wq_ O OEOF  0GOF
9= aq oy aq oy oq
OE OF K [86 8G@F]

X" gy ox T [ax T gy ox

Extension of Niklasson Lagrangian, PRL 100 123004 (2008) ") Universiy of Zurich



Dynamical System

eree 0 Mo ™o ™o eee x
% 3 ? SCF

L I y

- 2 " v "\,_
£ N .., .. ~ Forces

Y

) University of Zurich



Car—Parrinello Molecular Dynamics

y=x = G(x-yl)=0

Lagrangian

. . 1. . 1 .
ﬁ(q,q,X,X) = Equ + E,U,XZ - E(q,X)

Equations of motion

OE
oq
«_ OE
HE= " ox
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Properties of CPMD

e Accuracy: Medium
Distance from BO surface controlled by mass
Requires renormalization of dynamic quantities (e.g.
vibrational spectra)

o Stability: Excellent
All forces can be calculated to machine precision easily

o Efficiency: Good
Efficiency is strongly system dependent (electronic gap)
Requires many nuclear gradient calculations

Not implemented in CP2K!
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BOMD

y = MingkE(gq,x) and u=0

Lagrangian

1
£(9.9) = ;M4* + E(q.y)

. 1.
L(x,x) = §X2 + kG([[x = yll)

Equations of motion

Ma = -9
decoupled equations
X =-k4%<
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BOMD with Incomplete SCF Convergence

y = F(q,x) ~ MinxE(gq,x) and u=0

Equations of motion

Mg — _2E _OEOF

oq oy dq
. ,0G 0GOF
T T ox Oy ox

SCF Error: Neglect of force terms 4= 95

0G oF
gy ox*

EOM are coupled through terms neglected!
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ASPC Integrator

Integration of electronic DOF (x) has to be

e accurate: good wavefunction guess gives improved
efficiency

¢ stable: do not destroy time-reversibility of nuclear trajectory

ASPC: Always Stable Predictor Corrector

¢ J. Kolafa, J. Comput Chem. 25: 335-342 (2004)
e ASPC(k): time-reversible to order 2k + 1
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Orthogonality Constraint

Wavefunction extrapolation for non-orthogonal basis sets

K
T
Cinit = : :Bj+1 Ct—jTCi—j’rSf—jT Ct—T
i N——— —
j=0

PS

Coefficients B; are given by ASPC algorithm

X = Cinit
y[t] = C;
S overlap matrix

J. VandeVondele et al. Comp. Phys. Comm. 167: 103—128 (2005)
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Importance of Time-Reversibility

Method escr lterations Drift (Kelvin/ns)
Guess 1076 14.38 0.4
ASPC(3) 10706 5.01 0.2
ASPC(3) 107% 3.02 4.5
Gear(4) 10797 6.47 5.7
Gear(4) 10706 5.22 11.8
Gear(4) 107% 4.60 86.8
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Efficiency and Drift

Method

escr lterations Drift (Kelvin/ns)

Guess 10706 14.38 0.4
ASPC(4) 1006 5.01 0.2
ASPC(4) 10705 3.02 4.5
ASPC(4) 10704 1.62 1742.4
ASPC(4) 10702 1.03 21733.2
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Efficiency and Drift

escr lterations Drift (Kelvin/ns)

1004 1.62 1742.4
1004 1.63 1094.0
1004 1.79 397.4
1004 1.97 445.8

1004 2.06 24 1
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Langevin BOMD

Starting point: BOMD with ASPC(k) extrapolation

Analysis of forces

fBO(R) = fHF(R) + fPulay(R) +fnsc(R)
f(R)

fzo : correct BO force

fyr : Hellmann—Feynman force

foulay © Pulay force

fase - non-self consistency error force
f : approximate BO force
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Forces in Approximate BOMD

Approximate f,s. by
0 ch
frse = /d [( ) Ap + VH(AP)] 74

with Ap = p° — p', p° final (output) density, o’ initial (predicted)
density.

Now assume
f(R) + 7:nsc(R) - fBO(R) - 'YD.R

where ~p is a constant friction parameter.
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Langevin EOM

MR = f30(R) — (vp + 1. )R+ ©

with © a Gaussian random noise term and

(©(0)e(t)) = 6(vp + )Mk To(t)

Given temperature T = %(Mf?z) and an arbitrary v, this
determines +p
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Langevin BOMD

T. D. Kihne et al., Phys. Rev. Lett. 98 066441 (2007)

¢ single SCF step plus force correction needed
extremely efficient for systems with slow SCF convergence

e 7p is small: correct statistics and dynamics

e difficult to stabilize in complex systems
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Advanced Review

Car-Parrinello molecular
dynamics
Jurg Hutter*

The Car-Parrinello (CP) method made molecular dynamics simulation with on-
the-fly computation of interaction potentials from electronic structure theory
computationally feasible. The method reformulates ab initio molecular dynamics
(AIMD) as a two-component classical dynamical system. This approach proved
to be valuable far beyond the original CP molecular dynamics method. The mod-
ern formulation of Born-Oppenheimer (BO) dynamics is based on the same ba-
sic principles and can be derived from the same Lagrange function as the CP
method. These time-reversible BO molecular dynamics methods allow higher ac-
curacy and efficiency while providing similar longtime stability as the CP method.
AIMD is used in many fields of computational physics and chemistry. Its appli-
cations are instrumental in fields as divers as enzymatic catalysis and the study
of the interior of planets. With its versatility and predictive power, AIMD has
become a major approach in atomistic simulations. © 2011 John Wiley & Sons, Ltd.
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Summary: BOMD in CP2K

Born—Oppenheimer MD with ASPC(3) is default in CP2K

SCF convergence criteria depends on system
10~ — 105 is a reasonable starting guess

Best used together with OT and the
FULL_SINGLE_INVERSE preconditioner

Langevin dynamics is an option
needs some special care, mostly for uniform systems
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