Covalent self-assembly: steering highly directional nanostructures of porphyrins on Cu(110)

Andrea Floris

King's College London

King's College London
Lev Kantorovich
Sang Hongqian

Surface Science Reaserch Center
University of Liverpool
Rasmita Raval
Sam Haq
Bart Wit

Functionalizing a surface by molecular self-assembly

create chiral structures

- create particularly large domains on the surface
- create a networks with nanopores
 N. Abdurakhmanova, A. Floris *et al.*, Nature Comm. (2012)

•

• change the surface work function

A. Floris, A. Comisso, A. De Vita, ACS Nano (2013)

study the formation of highly selective structures

M.-C. Blüm et al., Angew. Chem. (2005)

G. Tomba et al, ACS Nano (2010)

Covalent self-assembly

Surface-molecule (SM) and molecule-molecule (MM)
 interactions made of covalent bonds
 (strong w.r.t. vdW, H-bond or electrostatic interactions)

Very robust structures

Self-assembled functionalized porphyrins on Cu(110)

Molecule: Tri-Methyl-Tetra-Phenyl-Porphyrin (TMTPP)

Cu(110) surface: rows

[1-10]: "easy" direction (=easy diffusion, along the rows)

[001]: "difficult" direction (=difficult diffusion,perpendicular to the rows)

Experimental facts

Before annealing (T=300K):

isolated molecules, randomly distributed

After annealing (at 550K):

methyl groups connect: chains, zig-zag, 2D structures form

M. In't Veld, P. Iavicoli, S.Haq, D. B. Amabilino, R. Raval, Chem. Comm (2008)

Hypothesis: dehydrogenation of peripherical methyls catalyzed by the substrate?

Goals

1. Find the stable structure on the substrate

geometrical relaxations

• simulations of STM images, compare with EXP

2. Understand the bonding mechanism

• de-hydrogenation

diffusion

• molecular bonding

CP2K: RUN_TYPE= GEO_OPT, with D2-Grimme

Geometry on the substrate

Energetics: CP2K versus Quantum-ESRPESSO

Geometries on the substrate

Two most stable configurations

Conf 11: Most stable (0 eV):

- Horizontal pyrroles
- vertical N
- •slightly rotated phenyls
- 2 N-Cu bond
- 4 C-Cu bonds
- Horizontal phenyls exposed to the substrate (vdW)
- 6 bonds

Geometries on the substrate

Conf 9, rotated 90 deg (+0.518 eV):

- •Similar to conf11
- NO C-Cu bonds

De-hydrogenation: H removal at T=0K

- Removing a H at T=0K H costs energy
- Peripherical H: the easiest to remove (~0.35eV)
- Core central H also "easy"

Relax upon peripherical H removal

H de-adsorption: role of T crucial

Experimentally at T=300K:

No bonding is observed

•No H de-adsorption is observed

H de-adsorption starts at 500K

Molecular diffusion: Nudge Elastic Bands (NEB)

- Diffusion is much more favourable along the rows
- DH does not affect diffusion along rows, while it does across

Molecular bonding: energy barriers

3 consecutive processes:

- •1st dehydrogenation
- •2nd dehydrogenation
- •diffusion-bonding

CP2K RUN_TYPE=BAND

STM: theory versus experiment

• LEV00 (simulation of STM at constant current) www.cmmp.ucl.ac.uk/~lev/codes/lev00/

http://

1D structures

TMTPP chains

• Steering different directions via different functional groups

CoDPP chains

Walker molecule

Ph.D students:

0.5 nm

Bart Wit Sang Hongqian

Diffusion lines observed by STM

B. Wit, S. Hongqian, S. Haq, A. Floris, L. Kantorovich, D. Amabilino, R. Raval, to be published

"Walking" mechanism along the rows

(0,0)(2,0)

"Walking" mechanism along the rows

(0,0)(0,2)

B. Wit, S. Hongqian, S. Haq, A. Floris, L. Kantorovich, D. Amabilino, R. Raval, to be published

Summary

- 1) Surface functionalization via **self-assembled molecules**
- 2) Functionalized porphyrins realize robust, covalent structures by heating
- 3) Bonding mechanism: dehydrogenation, diffusion, bonding
- 4) **1D fences and walking molecules:** huge playground for creating specific patterns on substrates
- 5) **CP2K**:
- Very good agreement with PW codes.
- Efficient RUN_TYPE= GEO_OPT and BAND